Williams Syndrome results in distinct behavioral phenotypes, which include learning deficits, anxiety, increased phobias and hypersociability. While the underlying mechanisms driving this subset of phenotypes is unknown, oxytocin (OT) dysregulation is hypothesized to be involved as some studies have shown elevated blood OT and altered OT receptor expression in patients. A "Complete Deletion" (CD) mouse, modeling the hemizygous deletion in Williams Syndrome, recapitulates many of the phenotypes present in humans. These CD mice also exhibit impaired fear responses in the conditioned fear task. Here, we address whether OT dysregulation is responsible for this impaired associative fear memory response. We show direct delivery of an OT receptor antagonist to the central nervous system did not rescue the attenuated contextual or cued fear memory responses in CD mice. Thus, increased OT signaling is not acutely responsible for this phenotype. We also evaluated OT receptor and serotonin transporter availability in regions related to fear learning, memory and sociability using autoradiography in wild type and CD mice. While no differences withstood correction, we identified regions that may warrant further investigation.There was a nonsignificant decrease in OT receptor expression in the lateral septal nucleus and nonsignificant lowered serotonin transporter availability in the striatum and orbitofrontal cortex. Together, these data suggest the fear conditioning anomalies in the Williams Syndrome mouse model are independent of any alterations in the oxytocinergic system caused by deletion of the Williams locus.
Williams Syndrome is caused by a deletion of 26-28 genes on chromosome 7q11.23. Patients with this disorder have distinct behavioral phenotypes including learning deficits, anxiety, increased phobias, and hypersociability. Some studies also suggest elevated blood oxytocin and altered oxytocin receptor expression, and this oxytocin dysregulation is hypothesized to be involved in the underlying mechanisms driving a subset of these phenotypes. A 'Complete Deletion' mouse, modeling the hemizygous critical region deletion in Williams Syndrome, recapitulates many of the phenotypes present in humans. These Complete Deletion mice also exhibited impaired fear responses in the conditioned fear task. Here, we address whether oxytocin dysregulation is responsible for this impaired associative fear memory response. We show direct delivery of an oxytocin receptor antagonist to the central nervous system did not rescue the attenuated contextual or cued fear memory responses in Complete Deletion mice. Thus, increased oxytocin signaling is not acutely responsible for this phenotype. We also evaluated oxytocin receptor and serotonin transporter availability in regions related to fear learning, memory, and sociability using autoradiography in wild type and Complete Deletion mice. While we identified trends in lowered oxytocin receptor expression in the lateral septal nucleus, and trends towards lowered serotonin transporter availability in the striatum and orbitofrontal cortex, we found no significant differences after correction. Together, these data suggest the fear conditioning anomalies in the Williams Syndrome mouse model are independent of any alterations in the oxytocinergic system caused by deletion of the Williams locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.