Adolescence is a developmental period characterized by suboptimal decisions and actions that are associated with an increased incidence of unintentional injuries, violence, substance abuse, unintended pregnancy, and sexually transmitted diseases. Traditional neurobiological and cognitive explanations for adolescent behavior have failed to account for the nonlinear changes in behavior observed during adolescence, relative to both childhood and adulthood. This review provides a biologically plausible model of the neural mechanisms underlying these nonlinear changes in behavior. We provide evidence from recent human brain imaging and animal studies that there is a heightened responsiveness to incentives and socioemotional contexts during this time, when impulse control is still relatively immature. These findings suggest differential development of bottom-up limbic systems, implicated in incentive and emotional processing, to top-down control systems during adolescence as compared to childhood and adulthood. This developmental pattern may be exacerbated in those adolescents prone to emotional reactivity, increasing the likelihood of poor outcomes.
Autism Spectrum Disorder (ASD) is a construct used to describe individuals with a specific combination of impairments in social communication and repetitive behaviours, highly restricted interests and/or sensory behaviours beginning early in life. The worldwide prevalence of autism is just under 1%, but estimates are higher in high-resource countries. Although gross brain pathology is not characteristic of autism, subtle anatomical and functional differences have been observed in postmortem, neuroimaging and electrophysiological studies. Initially it was hoped that accurate measurement of behavioural phenotypes would lead to specific genetic subtypes, but genetic findings have mainly applied to heterogeneous groups that are not specific to autism. Psychosocial interventions in children can improve specific behaviours, such as joint attention, language and social engagement that may affect further development and could reduce symptom severity. However, further research is necessary to identify the long-term needs and treatments and the mechanisms behind them that could result in improved independence and quality of life over time. Families are often the major source of support for people with AUTISM throughout much of life and need to be considered, along with the perspectives of autistic persons, in both research and practice. [H1] Introduction Autism spectrum disorder (ASD) is a common, highly heritable and heterogeneous neurodevelopmental disorder that has underlying cognitive features and commonly co-occurs with other conditions. The Autism spectrum disorder-or autism-is a neurodevelopmental disorder that typically manifests in young children. This Primer by Lord and colleagues reviews the epidemiology, mechanisms, clinical detection and treatment of autism.
Adolescence is a developmental period that entails substantial changes in affective and incentive-seeking behavior relative to both childhood and adulthood, including a heightened propensity to engage in risky behaviors and experience persistent negative and labile mood states. This review discusses the emotional and incentive-driven behavioral changes in adolescents and their associated neural mechanisms, focusing on the dynamic interactions between the amygdala, ventral striatum, and prefrontal cortex. Common behavioral changes during adolescence may be associated with a heightened responsiveness to incentives and emotional cues while the capacity to effectively engage in cognitive and emotion regulation is still relatively immature. We highlight empirical work in humans and animals that addresses the interactions between these neural systems in adolescents relative to children and adults, and propose a neurobiological model that may account for the nonlinear changes in adolescent behavior. Finally, we discuss other influences that may contribute to exaggerated reward and emotion processing associated with adolescence, including hormonal fluctuations and the role of the social environment.
Mouse models are useful for studying genes involved in behavior, but whether they are relevant for human behavior is unclear. Here, we identified parallel phenotypes in mice and humans resulting from a common single-nucleotide polymorphism in the brain-derived neurotrophic factor (BDNF) gene, which is involved in anxiety-related behavior. An inbred genetic knock-in mouse strain expressing the variant BDNF recapitulated the phenotypic effects of the human polymorphism. Both were impaired in extinguishing a conditioned fear response, which was paralleled by atypical frontoamygdala activity in humans. Thus, this variant BDNF allele may play a role in anxiety disorders showing impaired learning of cues that signal safety versus threat, and in the efficacy of treatments that rely on extinction mechanisms such as exposure therapy.Genetically modified mice provide useful model systems for testing the role of candidate genes in behavior. The extent to which such genetic manipulations in the mouse and the resulting phenotype can be translated across species, from mouse to human, is less clear. In this report we focused on identifying biologically valid phenotypes across species. We utilized a common single nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene that leads to a valine (Val) to methionine (Met) substitution at codon 66 (Val66Met). In an inbred genetic knock-in mouse strain that expresses the variant BDNF allele to recapitulate the specific phenotypic properties of the human polymorphism in vivo, we found the BDNF Val66Met genotype was associated with treatment resistant forms of anxiety-like behavior (1). The objective of this study was to test if the Val66Met genotype could impact extinction learning in our mouse model, and if such findings could be generalized to human populations.BDNF mediates synaptic plasticity associated with learning and memory (2,3) specifically in fear learning and extinction (4,5). BDNF-dependent forms of fear learning have known biological substrates, and lie at the core of a number of clinical disorders (6,7) associated with the variant BDNF (8-10). Fear learning paradigms require the ability to recognize and +To whom correspondence should be addressed. fas2002@med.cornell.edu or bjc2002@med.cornell.edu. remember cues that signal safety or threat and to extinguish these associations when they no longer exist. These abilities are impaired in anxiety disorders such as posttraumatic stress disorder and phobias (11,12). Behavioral treatments for these disorders such as exposure therapy rely on basic principles of extinction learning (13) in which an individual is repeatedly exposed to an event that was previously associated with aversive consequences. Understanding the effect of the BDNF Met allele on these forms of learning can provide insight into the mechanism of risk for anxiety disorders, refine existing treatments, and may lead to genotypebased personalized medicine. NIH Public AccessWe examined the impact of the variant BDNF on classic fear...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.