Avian eggs differ so much in their colour and patterning from species to species that any attempt to account for this diversity might initially seem doomed to failure. Here I present a critical review of the literature which, when combined with the results of some comparative analyses, suggests that just a few selective agents can explain much of the variation in egg appearance. Ancestrally, bird eggs were probably white and immaculate. Ancient diversification in nest location, and hence in the clutch's vulnerability to attack by predators, can explain basic differences between bird families in egg appearance. The ancestral white egg has been retained by species whose nests are safe from attack by predators, while those that have moved to a more vulnerable nest site are now more likely to lay brown eggs, covered in speckles, just as Wallace hypothesized more than a century ago. Even blue eggs might be cryptic in a subset of nests built in vegetation. It is possible that some species have subsequently turned these ancient adaptations to new functions, for example to signal female quality, to protect eggs from damaging solar radiation, or to add structural strength to shells when calcium is in short supply. The threat of predation, together with the use of varying nest sites, appears to have increased the diversity of egg colouring seen among species within families, and among clutches within species. Brood parasites and their hosts have probably secondarily influenced the diversity of egg appearance. Each drives the evolution of the other's egg colour and patterning, as hosts attempt to avoid exploitation by rejecting odd-looking eggs from their nests, and parasites attempt to outwit their hosts by laying eggs that will escape detection. This co-evolutionary arms race has increased variation in egg appearance both within and between species, in parasites and in hosts, sometimes resulting in the evolution of egg colour polymorphisms. It has also reduced variation in egg appearance within host clutches, although the benefit thus gained by hosts is not clear.
Cuckoo nestlings that evict all other young from the nest soon after hatching impose a high reproductive cost on their hosts. In defence, hosts have coevolved strategies to prevent brood parasitism. Puzzlingly, they do not extend beyond the egg stage. Thus, hosts adept at recognizing foreign eggs remain vulnerable to exploitation by cuckoo nestlings. Here we show that the breach of host egg defences by cuckoos creates a new stage in the coevolutionary cycle. We found that defences used during the egg-laying period by host superb fairy-wrens (Malurus cyaneus) are easily evaded by the Horsfield's bronze-cuckoo (Chrysococcyx basalis), a specialist fairy-wren brood parasite. However, although hosts never deserted their own broods, they later abandoned 40% of nests containing a lone Horsfield's bronze-cuckoo nestling, and 100% of nests with a lone shining bronze-cuckoo nestling (Chrysococcyx lucidus), an occasional fairy-wren brood parasite. Our experiments demonstrate that host discrimination against evictor-cuckoo nestlings is possible, and suggest that it has selected for the evolution of nestling mimicry in bronze-cuckoos.
Cooperative breeding systems are characterized by nonbreeding helpers that assist breeders in offspring care. However, the benefits to offspring of being fed by parents and helpers in cooperatively breeding birds can be difficult to detect. We offer experimental evidence that helper effects can be obscured by an undocumented maternal tactic. In superb fairy-wrens (Malurus cyaneus), mothers breeding in the presence of helpers lay smaller eggs of lower nutritional content that produce lighter chicks, as compared with those laying eggs in the absence of helpers. Helpers compensate fully for such reductions in investment and allow mothers to benefit through increased survival to the next breeding season. We suggest that failure to consider maternal egg-investment strategies can lead to underestimation of the force of selection acting on helping in avian cooperative breeders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.