Election outcomes have been predicted in the past with the help of various state-of-the-art language models. Sentiment analysis helps in establishing the opinions of the public about a particular subject, a popular experiment known as opinion mining. Twitter has grown in popularity and proven to be a key tool in mining people’s sentiments concerning election and other trending subjects of interest. The outcome of the just concluded Presidential election in Nigeria shifts the focus on Lagos State governorship election. In this study, we propose a Bidirectional Encoder Representations from Transformers (BERT) model for the sentiment analysis of governorship election in Lagos State Nigeria using Twitter data. A total of 800,000 personal and public tweets were scraped from twitter concerning the three prominent contesting candidates using carefully selected search queries. The tweets were preprocessed to avoid noise and inconsistencies. The preprocessed tweets were passed into the pretrained and finetuned BERT model. The result was analyzed to establish the sentiments of the public about the candidates. The social networks of the candidates were also analyzed. The parameter-tuning yield different results with different learning rates (LR). Results showed that the learning rate at 1e-7 gave the best performance and that the smaller the learning rate, the higher the accuracy but the larger the epoch size, the higher the accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.