This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library “MaStar”). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).
We have examined a subset of 18 active galactic nuclei (AGNs) drawn from a sample of 81 galaxies that possess double-peaked narrow optical emission line spectra in the Sloan Digital Sky Survey, have two optical AGN emission components separated by > 0.2 , and are detected in the Faint Images of the Radio Sky at Twenty-centimeters survey. Without follow-up observations, the sources of the double-peaked narrow emission lines are uncertain, and may be produced by kpc-scale separation dual active supermassive black holes, AGN outflows, or disk rotation. In this work, we propose a new methodology to characterize double-peaked narrow emission-line galaxies based on optical long-slit spectroscopy and high resolution multi-band Very Large Array observations. The nature of the radio emission in the sample galaxies is varied. Of the 18 galaxies, we detect two compact flat-spectrum radio cores with projected spatial separations on the sky between 0.6 − 1.6 kpc in three galaxies: J1023 + 3243, J1158 + 3231, and J1623 + 0808. The two radio sources are spatially coincident with the two optical components of ionized gas with AGN-like line ratios, which confirms the presence of dual AGNs in these three galaxies. Dual AGNs account for only ∼ 15% ( 3 /18) of the double-peaked AGNs in our sample. Gas kinematics produce ∼ 75% ( 13 /18) of the double-peaked narrow emission lines, distributed in the following way: 7 AGN wind-driven outflows, 5 radio-jet driven outflows, and one rotating narrow-line region. The remaining 10% ( 2 /18) are ambiguous cases. Our method demonstrates the power of spatially resolved spectroscopy and high resolution radio observations for the identification of AGN outflows and AGN pairs with angular separations as small as 0.18 .
We present optical longslit observations of the complete sample of 71 Type 2 active galactic nuclei (AGNs) with double-peaked narrow emission lines at z < 0.1 in the Sloan Digital Sky Survey. Doublepeaked emission lines are produced by a variety of mechanisms including disk rotation, kpc-scale dual AGNs, and NLR kinematics (outflows or inflows). We develop a novel kinematic classification technique to determine the nature of these objects using longslit spectroscopy alone. We determine that 86% of the double-peaked profiles are produced by moderate luminosity AGN outflows, 6% are produced by rotation, and 8% are ambiguous. While we are unable to directly identify dual AGNs with longslit data alone, we explore their potential kinematic classifications with this method. We also find a positive correlation between the narrow-line region (NLR) size and luminosity of the AGN NLRs (R NLR ∝ L [OIII] 0.21±0.05 ), indicating a clumpy two-zone ionization model for the NLR.
Merging galaxies play a key role in galaxy evolution, and progress in our understanding of galaxy evolution is slowed by the difficulty of making accurate galaxy merger identifications. We use GADGET-3 hydrodynamical simulations of merging galaxies with the dust radiative transfer code SUNRISE to produce a suite of merging galaxies that span a range of initial conditions. This includes simulated mergers that are gas poor and gas rich and that have a range of mass ratios (minor and major). We adapt the simulated images to the specifications of the SDSS imaging survey and develop a merging galaxy classification scheme that is based on this imaging. We leverage the strengths of seven individual imaging predictors (Gini, M 20 , concentration, asymmetry, clumpiness, Sérsic index, and shape asymmetry) by combining them into one classifier that utilizes Linear Discriminant Analysis. It outperforms individual imaging predictors in accuracy, precision, and merger observability timescale (> 2 Gyr for all merger simulations). We find that the classification depends strongly on mass ratio and depends weakly on the gas fraction of the simulated mergers; asymmetry is more important for the major mergers, while concentration is more important for the minor mergers. This is a result of the relatively disturbed morphology of major mergers and the steadier growth of stellar bulges during minor mergers. Since mass ratio has the largest effect on the classification, we create separate classification approaches for minor and major mergers that can be applied to SDSS imaging or adapted for other imaging surveys.
Accurate active galactic nucleus (AGN) identifications and spatially resolved host galaxy properties are a powerful combination for studies of the role of AGNs and AGN feedback in the coevolution of galaxies and their central supermassive black holes. Here, we present robust identifications of 406 AGNs in the first 6261 galaxies observed by the integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory. Instead of using optical line flux ratios, which can be difficult to interpret in light of the effects of shocks and metallicity, we identify the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/BAT ultrahard X-ray detections, NVSS and FIRST radio observations, and broad emission lines in SDSS spectra. We subdivide the AGNs into radio-quiet and radio-mode AGNs, and examine the correlations of the AGN classes with host galaxy star formation rates and stellar populations. When compared to the radio-quiet AGN host galaxies, we find that the radio-mode AGN host galaxies are preferentially elliptical, lie further beneath the star-forming main sequence (with lower star formation rates at fixed galaxy mass), have older stellar populations, and have more negative stellar age gradients with galactocentric distance (indicating inside-out quenching of star formation). These results establish a connection between radio-mode AGNs and the suppression of star formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.