The use of botanicals and dietary supplements derived from natural substances as an adjunct to an improved quality of life or for their purported medical benefits has become increasingly common in the United States. This review addresses the safety assessment and regulation of food products containing these substances by the U.S. Food and Drug Administration (FDA). The issue of safety is particularly critical given how little information is available on the toxicity of some of these products. The first section uses case studies for stevia and green tea extracts as examples of how FDA evaluates the safety of botanical and herbal products submitted for consideration as Generally Recognized as Safe under the Federal Food, Drug, and Cosmetics Act. The 1994 Dietary Supplement Health Education Act (DSHEA) created a regulatory framework for dietary supplements. The article also discusses the regulation of this class of dietary supplements under DSHEA and addresses the FDA experience in analyzing the safety of natural ingredients described in pre-market safety submissions. Lastly, we discuss an ongoing interagency collaboration to conduct safety testing of nominated dietary supplements.
Expression of the cell surface receptor Fas is frequently lost or decreased during tumor progression in human colon carcinomas. The methylation status of a 583 bp CpG-rich region within the Fas promoter (À575 to +8) containing 28 CpG sites was determined in human colon carcinoma cell lines. In Caco2 (no Fas expression), 82-93% of CpG sites were methylated, whereas none were methylated in GC 3 /c1 (high Fas expression). In RKO (intermediate level of Fas), a single CpG site, located at -548, was 100% methylated. The inhibitor of methylation, 5-aza-2 0 -deoxycytidine (5-azadC), upregulated Fas expression in four of eight cell lines, and sensitized RKO cells to recombinant FasL-induced apoptosis. The p53-binding region in the first intron of the Fas gene was partially methylated in Caco2, and 5-azadC potentiated Ad-wtp53-induced upregulation of Fas expression. Methylation-specific PCR of the first intron detected partial methylation in four out of 10 colon carcinoma tumor samples in vivo. The data suggest that DNA hypermethylation is one mechanism that contributes to the downregulation of Fas expression and subsequent loss of sensitivity to Fas-induced apoptosis in colon carcinoma cells.
The enzyme O6-methylguanine-DNA methyltransferase (MGMT) protects cells from the cytotoxic and mutagenic effects of alkylating agents. Approximately 20% of tumor cell lines lack MGMT activity and are highly sensitive to alkylating agents. In established cancer cell lines, MGMT expression appears to be correlated with methylation of residues in both the promoter and the body of the gene. The effect of methylation of the MGMT promoter on gene expression and carcinogenesis in primary tumors is unknown. We investigated methylation of the MGMT promoter region in primary colorectal cancers and normal colonic mucosa. We used five methylation-sensitive restriction enzymes (BssHII, SacII, Eagl, Nael, and Smal) and Southern blot analysis to assess methylation in 46 cancers and 22 controls. Methylation of Eagl and Nael sites was seen in 12 tumors but in none of the 22 normal colorectal mucosa specimens. This difference was statistically significant (P<0.01). Methylation-sensitive single-nucleotide primer extension analysis of four additional cytosine residues confirmed methylation of the promoter region in the tumors identified by Eagl and Nael digestions and served to further quantitate the extent of methylation. Western blot analysis of 21 tumors revealed statistically significant lower MGMT expression in the eight tumors with methylation of the Eagl and Nael sites and nt -128 than in the 13 tumors lacking the methylation pattern (P<0.05). MGMT activity was lower in tumors with methylation than in tumors that were not methylated. The difference was not, however, statistically significant. We conclude that a subset of colorectal tumors is characterized by a specific methylation pattern in the MGMT promoter associated with reduced MGMT expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.