The number of alien plant species is growing steadily across all world regions. These numbers tend to be exceptionally high in riparian ecosystems, often with substantial negative consequences for native species communities and ecosystem services provision. Here, we map the richness of invasive alien plant species in riparian ecosystems of continental Portugal, assess the relative importance of human and natural factors in shaping the uncovered patterns, and predict richness values along watercourses and at the municipal level for the whole study area. We found a higher richness of invasive alien plants in low altitudes and in downstream areas where human concentration is high. As time progresses, ongoing and increasing levels of socio-economic activity and globalization of plant trade will conceivably lead to a higher number of alien species becoming established. National and sub-national measures aiming to prevent and manage biological invasions in riparian ecosystems require coordinated efforts involving both local entities and those with responsibilities in the management of upstream catchment areas. These efforts must also be targeted to achieve future biodiversity protection goals as part of the EU Biodiversity Strategy for 2030.
Coppice forests are socio-ecological systems especially rich in biodiversity. They have been transformed into high forest and abandoned across large areas of Europe over the past 200 years. Coppice loss is likely an important driver of insect declines. It is currently unclear whether habitat quality or decreasing connectivity of the remaining fragments is more important for the survival of insect populations. We related the abundance of two coppice-attached butterflies of conservation concern, Satyrium ilicis and Melitaea athalia, to indicators of habitat quality and habitat connectivity. We estimated butterfly densities using Distance Sampling along a successional gradient (time since last cut: 1-9 years; N = 130 plots) across one of the largest remaining simple oak-birch coppice landscapes in Central Europe. Both species reached abundance peaks within four to six years after the last cut, declining rapidly in abundance with subsequent succession. We found no evidence that coupe size, coppice availability and patch (= coupe) connectivity were related to the density of the species. Besides stand age, the cover of larval foodplants explained predicted butterfly densities well. Only Satyrium ilicis benefitted from high Red Deer densities. Implications for insect conservation: Our results suggest that habitat quality and sufficient availability of coppice of suitable age matters more than coupe size and fragmentation within a traditional managed coppice landscape. Coppice restoration aiming at the study species should ensure a shifting mosaic of successional habitat to provide a large availability of resprouting oak stools and blueberry vegetation that holds dense Melampyrum pratense stands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.