This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Understanding biodiversity in aquatic systems is critical to ecological research and conservation efforts, but accurately measuring species richness using traditional methods can be challenging. Environmental DNA (eDNA) metabarcoding, which uses high-throughput sequencing and universal primers to amplify DNA from multiple species present in an environmental sample, has shown great promise for augmenting results from traditional sampling to characterize fish communities in aquatic systems. Few studies, however, have compared exhaustive traditional sampling with eDNA metabarcoding of corresponding water samples at a small spatial scale. We intensively sampled Boardman Lake (137 ha) in Michigan, USA from May to June in 2019 using gill and fyke nets and paired each net set with lake water samples collected in triplicate. We analyzed water samples using eDNA metabarcoding with 12S and 16S fish-specific primers and compared estimates of fish diversity among methods. In total, we set 60 nets and analyzed 180 1 L lake water samples. We captured a total of 12 fish species in our traditional gear and detected 40 taxa in the eDNA water samples, which included all the species observed in nets. The 12S and 16S assays detected a comparable number of taxa, but taxonomic resolution varied between the two genes. In our traditional gear, there was a clear difference in the species selectivity between the two net types, and there were several species commonly detected in the eDNA samples that were not captured in nets. Finally, we detected spatial heterogeneity in fish community composition across relatively small scales in Boardman Lake with eDNA metabarcoding, but not with traditional sampling. Our results demonstrated that eDNA metabarcoding was substantially more efficient than traditional gear for estimating community composition, highlighting the utility of eDNA metabarcoding for assessing species diversity and informing management and conservation.
Fragmentation of river systems by dams can have substantial genetic impacts on fish populations. However, genetic structure can exist naturally at small scales through processes other than isolation by physical barriers. We sampled individuals from five native fish species with varying life histories above and below a dam in the lower Boardman River, Michigan, USA, and used RADseq to investigate processes influencing genetic structure in this system. Species assessed were white sucker Catostomus commersonii, yellow perch Perca flavescens, walleye Sander vitreus, smallmouth bass Micropterus dolomieu, and rock bass Ambloplites rupestris. We detected significant differentiation within each species, but patterns of population structure varied substantially. Interestingly, genetic structure did not appear to be solely the result of fragmentation by the dam. While genetic structure in yellow perch and walleye generally coincided with “above dam” and “below dam” sampling locations, samples from our other three species did not. Specifically, samples from rock bass, smallmouth bass, and, to a much lesser extent, white sucker, aligned with a putative Great Lakes (GL) group that contained mostly individuals sampled below the dam and a putative Boardman River (BR) group that contained individuals sampled both above and below the dam, with some evidence of admixture among groups. We hypothesize that the GL and BR groups formed prior to dam construction and our samples largely represent a mixed stock that was sampled sympatrically outside of the spawning season. Support for this hypothesis is especially strong in smallmouth bass, where GL fish were 151 mm smaller than BR fish on average, suggesting a potential ontogenetic habitat shift of young GL fish into the lower river for feeding and/or refuge. Our study illuminates the complex dynamics shaping genetic structure in fragmented river systems and indicates that conclusions drawn for a single species cannot be generalized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.