Spatial models that provide estimates of wood quality enable value chain optimization approaches that consider the market potential of trees prior to harvest. Ecological land classification units (e.g., ecosite) and structural metrics derived from Airborne Laser Scanning (ALS) data have been shown to be useful predictors of wood quality attributes in black spruce stands of the boreal forest of Ontario, Canada. However, age drives much of the variation in wood quality among trees, and has not been included as a predictor in previous models because it is poorly represented in inventory systems. The objectives of this study were (i) to develop a predictive model of mean stem age of black spruce-dominated stands, and (ii) refine models of black spruce wood density by including age as a predictor variable. A non-parametric model of stand age that used a k nearest neighbor (kNN) classification based on a random forests (rf) distance metric performed well, producing a root mean square difference (RMSD) of 15 years and explaining 62% of the variance. The subsequent random forests model of black spruce wood density generated from age and ecosite predictors was useful, with a root mean square error (RMSE) of 59.1 kg·m−3. These models bring large-scale wood quality prediction closer to becoming operational by including age and site effects that can be derived from inventory data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.