The goal of this study was to compare insulin resistance in aging and aging-related neurodegenerative diseases, and to determine the relationship between insulin resistance and gray matter volume (GMV) in each cohort using an unbiased, voxel-based approach. Insulin resistance was estimated in apparently healthy elderly control (HC, n = 21) and neurodegenerative disease (Alzheimer’s disease (AD), n = 20; Parkinson’s disease (PD), n = 22) groups using Homeostasis Model Assessment of Insulin Resistance 2 (HOMA2) and intravenous glucose tolerance test (IVGTT). HOMA2 and GMV were assessed within groups through General Linear Model multiple regression. We found that HOMA2 was increased in both AD and PD compared to the HC group (HC vs. AD, p = 0.002, HC vs. PD, p = 0.003), although only AD subjects exhibited increased fasting glucose (p = 0.005). Furthermore, our voxel-based morphometry analysis revealed that HOMA2 was related to GMV in all cohorts in a region-specific manner (p < 0.001, uncorrected). Significant relationships were observed in the medial prefrontal cortex (HC), medial temporal regions (AD), and parietal regions (PD). Finally, the directionality of the relationship between HOMA2 and GMV was disease-specific. Both HC and AD subjects exhibited negative relationships between HOMA2 and brain volume (increased HOMA2 associated with decreased brain volume), while a positive relationship was observed in PD. This cross-sectional study suggests that insulin resistance is increased in neurodegenerative disease, and that individuals with AD appear to have more severe metabolic dysfunction than individuals with PD or PD dementia.
Alzheimer's disease (AD) and Parkinson's disease (PD) are among the most common neurodegenerative disorders affecting older populations. AD is characterized by impaired memory and cognitive decline while the primary symptoms of PD include resting tremor, bradykinesia and rigidity. In PD, mild cognitive changes are frequently present, which could progress to dementia (PD dementia (PDD)). PDD and AD dementias are different in pathology although the difference in microstructural changes remains unknown. To further understand these diseases, it is essential to understand the distinct mechanism of their microstructural changes. We used diffusion tensor imaging (DTI) to investigate white matter tract differences between early stage individuals with AD (n=14), PD (n=12), PDD (n=9), and healthy non-demented controls (CON) (n=13). We used whole brain tract based spatial statistics (TBSS) and a region of interest (ROI) analysis focused on the substantia nigra (SN). We found that individuals with PDD had more widespread white matter degeneration compared to PD, AD, and CON. Individuals with AD had few regional abnormalities in the anterior and posterior projections of the corpus callosum while PD and CON did not appear to have significant white matter degeneration when compared to other groups. ROI analyses showed that PDD had the highest diffusivity in the SN and were significantly different from CON. There were no significant ROI differences between CON, PD, or AD. In conclusion, global white matter microstructural deterioration is evident in individuals with PDD, and DTI may provide a means with which to tease out pathological differences between AD and PD dementias.
Lesbian, gay, bisexual, transgender, and questioning (LGBTQ) individuals are up to twice as likely to use tobacco products compared with heterosexual and cisgender individuals. Transgender individuals may be more likely to use tobacco compared with cisgender individuals, although this effect may diminish with adjustment for other sociologic variables. Bisexual women are more likely to use tobacco, even compared with other LGBTQ individuals (SOR: B, cross-sectional studies).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.