Pigeons were trained on a two-choice simultaneous discrimination (red vs. green) that reversed midway through each session. After considerable training, they consistently made both anticipatory errors prior to the reversal and perseverative errors after the reversal, suggesting that time (or number of trials) into the session served as a cue for reversal. In Experiment 2, to discourage the use of time as a cue, we varied the location of the reversal point within the session such that it occurred semirandomly after Trial 10, 25, 40, 55, or 70. Pigeons still tended both to anticipate and to perseverate. In Experiment 3, we required 20 pecks to a stimulus on each trial to facilitate memory for the preceding response and sensitivity to local reinforcement contingencies, but the results were similar to those of Experiment 2. We then tested humans on a similar task with a constant (Experiment 4) or variable (Experiment 5) reversal location. When the reversal occurred consistently at the midpoint of the session, humans, like pigeons, showed a tendency to anticipate the reversal; however, they did not show perseverative errors. When the reversal location varied between sessions, unlike pigeons, humans adopted a win-stay/lose-shift strategy, making only a single error on the first trial of the reversal.
Research has shown that pigeons given a simultaneous visually based discrimination reversal, in which a single reversal occurs at the midpoint of each session, consistently show anticipation prior to the reversal as well as perseveration after the reversal, suggesting that they use a less effective cue (time or trial number into the session) than what would be optimal to maximize reinforcement (local feedback from the most recent trials). In the present research, pigeons (Columba livia) and rats (Rattus norvegicus) were tested with a simultaneous spatial discrimination midsession reversal. Pigeons showed remarkably similar errors in anticipation and perseveration as with visual stimuli, thereby continuing to show the suboptimal use of time as a cue, whereas rats showed no anticipatory errors and very few perseverative errors, suggesting that they used local feedback as a cue, thus more nearly optimizing reinforcement. To further test the rats' flexibility, they were then tested with a variable point of reversal and then with multiple points of reversal within a session. Results showed that the rats effectively maximized reinforcement by developing an approximation to a win-stay/lose-shift rule. The greater efficiency shown by rats with this task suggests that they are better able to use the feedback from their preceding choice as the basis of their future choice. The difference in cue preference further suggests a qualitative difference in acquisition of the midsession reversal task between pigeons and rats.
Discrimination reversal tasks have been used as a measure of species flexibility in dealing with changes in reinforcement contingency. The simultaneous-discrimination, midsession reversal task is one in which one stimulus (S1) is correct for the first 40 trials of an 80-trial session and the other stimulus (S2) is correct for the remaining trials. After many sessions of training with this task, pigeons show a curious pattern of choices. They begin to respond to S2 well before the reversal point (they make anticipatory errors) and they continue to respond to S1 well after the reversal (they make perseverative errors). That is, they appear to be using the passage of time or number of trials into the session as a cue to reverse. We tested the hypothesis that these errors resulted in part from a memory deficit (the inability to remember over the intertrial interval, ITI, both the choice on the preceding trial and the outcome of that choice) by manipulating the duration of the ITI (1.5, 5, and 10 s). We found support for the hypothesis as pigeons with a short 1.5-s ITI showed close to optimal win-stay/lose-shift accuracy.
A successful procedure for studying imitative behavior in non-humans is the bidirectional control procedure in which observers are exposed to a demonstrator that responds by moving a manipulandum in one of two different directions (e.g., left vs. right). Imitative learning is demonstrated when observers make the response in the direction that they observed it being made. This procedure controls for socially mediated effects (the mere presence of a demonstrator), stimulus enhancement (attention drawn to a manipulandum by its movement), and if an appropriate control is included, emulation (learning how the environment works). Recent research with dogs has found that dogs may not demonstrate imitative learning when the demonstrator is human. In the present research, we found that when odors were controlled for, dogs imitated the direction of a screen push demonstrated by another dog more than in a control condition in which they observed the screen move independently while another dog was present. Furthermore, we found that dogs would match the direction of screen push demonstrated by a human and they were equally likely to match the direction in which the screen moved independently while a human was present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.