The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system generates global, daily, gap-filled foundation sea surface temperature (SST) fields from satellite data and in situ observations. The SSTs have uncertainty information provided with them and an ice concentration (IC) analysis is also produced. Additionally, a global, hourly diurnal skin SST product is output each day. The system is run in near real time to produce data for use in applications such as numerical weather prediction. Data production is monitored routinely and outputs are available from the Copernicus Marine Environment Monitoring Service (CMEMS; marine.copernicus.eu). As an operational product, the OSTIA system is continuously under development. For example, since the original descriptor paper was published, the underlying data assimilation scheme that is used to generate the foundation SST analyses has been updated. Various publications have described these changes but a full description is not available in a single place. This technical note focuses on the production of the foundation SST and IC analyses by OSTIA and aims to provide a comprehensive description of the current system configuration.
The Copernicus Marine Environment Monitoring Service (CMEMS) provides regular and systematic reference information on the physical and biogeochemical ocean and sea-ice state for the global ocean and the European regional seas. CMEMS serves a wide range of users (more than 15,000 users are now registered to the service) and applications. Observations are a fundamental pillar of the CMEMS value-added chain that goes from observation to information and users. Observations are used by CMEMS Thematic Assembly Centres (TACs) to derive high-level data products and by CMEMS Monitoring and Forecasting Centres (MFCs) to validate and constrain their global and regional ocean analysis and forecasting systems. This paper presents an overview of CMEMS, its evolution, and how the value of in situ and satellite observations is increased through the generation of high-level products ready to be used by downstream applications and services. The complementary nature of satellite and in situ observations is highlighted. Le Traon et al. Copernicus Marine Service: Observations Long-term perspectives for the development of CMEMS are described and implications for the evolution of the in situ and satellite observing systems are outlined. Results from Observing System Evaluations (OSEs) and Observing System Simulation Experiments (OSSEs) illustrate the high dependencies of CMEMS systems on observations. Finally future CMEMS requirements for both satellite and in situ observations are detailed.
The Copernicus Marine Environment Monitoring Service (CMEMS) Ocean State Report (OSR) provides an annual report of the state of the global ocean and European regional seas for policy and decision-makers with the additional aim of increasing general public awareness about the status of, and changes in, the marine environment. The CMEMS OSR draws on expert analysis and provides a 3-D view (through reanalysis systems), a view from above (through remote-sensing data) and a direct view of the interior (through in situ measurements) of the global ocean and the European regional seas. The report is based on the unique CMEMS monitoring capabilities of the blue (hydrography, currents), white (sea ice) and green (e.g. Chlorophyll) marine environment. This first issue of the CMEMS OSR provides guidance on Essential Variables, large-scale changes and specific events related to the physical ocean state over the period 1993–2015. Principal findings of this first CMEMS OSR show a significant increase in global and regional sea levels, thermosteric expansion, ocean heat content, sea surface temperature and Antarctic sea ice extent and conversely a decrease in Arctic sea ice extent during the 1993–2015 period. During the year 2015 exceptionally strong large-scale changes were monitored such as, for example, a strong El Niño Southern Oscillation, a high frequency of extreme storms and sea level events in specific regions in addition to areas of high sea level and harmful algae blooms. At the same time, some areas in the Arctic Ocean experienced exceptionally low sea ice extent and temperatures below average were observed in the North Atlantic Ocean
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.