Deletion of phenylalanine 508 of the cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR) is a major cause of cystic fibrosis (CF), one of the most common inherited childhood diseases. ΔF508 CFTR is a trafficking mutant that is retained in the endoplasmic reticulum (ER) and unable to reach the plasma membrane. Efforts to enhance exit of ΔF508 CFTR from the ER and improve its trafficking are of utmost importance for the development of treatment strategies. Using protein interaction profiling and global bioinformatics analysis we revealed mammalian target of rapamycin (mTOR) signalling components to be associated with ∆F508 CFTR. Our results demonstrated upregulated mTOR activity in ΔF508 CF bronchial epithelial (CFBE41o-) cells. Inhibition of the Phosphatidylinositol 3-kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR) pathway with 6 different inhibitors demonstrated an increase in CFTR stability and expression. Mechanistically, we discovered the most effective inhibitor, MK-2206 exerted a rescue effect by restoring autophagy in ΔF508 CFBE41o- cells. We identified Bcl-2-associated athanogene 3 (BAG3), a regulator of autophagy and aggresome clearance to be a potential mechanistic target of MK-2206. These data further link the CFTR defect to autophagy deficiency and demonstrate the potential of the PI3K/Akt/mTOR pathway for therapeutic targeting in CF.
Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapyinduced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP).Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We demonstrate that Bag3 and MVP contribute to apoptosis resistance in therapyinduced senescence by increasing the level of activation of extracellular signal-regulated kinase1/2 (ERK1/2). Silencing of either Bag3 or MVP decreased ERK1/2 activation and promoted apoptosis in adriamycin-treated cells. An increase in nuclear accumulation of MVP is observed during therapy-induced senescence and the shift in MVP subcellular localization is Bag3-dependent. We propose a model in which Bag3 binds to MVP and facilitates MVP accumulation in the nucleus, which sustains ERK1/2 activation. We confirmed that silencing of Bag3 or MVP shifts the response toward apoptosis and regulates ERK1/2 activation in a panel of diverse breast cancer cell lines. This study highlights Bag3-MVP as an important complex that regulates a potent prosurvival signaling pathway and contributes to chemotherapy resistance in breast cancer.
RationaleMutations in the cystic fibrosis transmembrane regulator (CFTR) gene form the basis of cystic fibrosis (CF). There remains an important knowledge gap in CF as to how diminished CFTR activity leads to the dominant inflammatory response within CF airways.ObjectivesTo investigate if extracellular vesicles (EVs) contribute to inflammatory signalling in CF.MethodsEVs released from CFBE41o-, CuFi-5, 16HBE14o- and NuLi-1 cells were characterised by nanoparticle tracking analysis (NTA). EVs isolated from bronchoalveolar lavage fluid (BALF) from 30 people with CF (PWCF) were analysed by NTA and mass spectrometry and compared with controls. Neutrophils were isolated from the blood of 8 PWCF to examine neutrophil migration in the presence of CFBE41o- EVs.ResultsA significantly higher level of EVs were released from CFBE41o- (p<0.0001) and CuFi-5 (p=0.0209) relative to control cell lines. A significantly higher level of EVs were detected in BALF of PWCF, in three different age groups relative to controls (p=0.01, 0.001, 0.002). A significantly lower level of EVs were released from CFBE41o- (p<0.001) and CuFi-5 (p=0.0002) cell lines treated with CFTR modulators. Significant changes in the protein expression of 126 unique proteins was determined in EVs obtained from the BALF of PWCF of different age groups (p<0.001–0.05). A significant increase in chemotaxis of neutrophils derived from PWCF was observed in the presence of CFBE41o EVs (p=0.0024) compared with controls.ConclusionThis study demonstrates that EVs are produced in CF airway cells, have differential protein expression at different ages and drive neutrophil recruitment in CF.
Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.
A necessary component of lying is the withholding of a truthful response. Hence, lying may be conceptualised as involving the inhibition of an initial, automatic response (the truth) while an alternative response (the lie) is generated. We investigated response times to visually and auditorially presented questions probing recent episodic memory, when subjects answered questions truthfully or with lies. We also investigated whether the absolute response times or difference between time taken to tell the truth or lie was affected by participants' sex or correlated with personality scores on the Eysenck Personality Questionnaire Revised-Short Scale. 61 subjects answered the same 36 questions five times. The first time involved answering all questions truthfully, which allowed post hoc analysis of whether subjects had been consistent in their lying and truth-telling on the following four occasions. These latter four occasions involved answering all questions (one each with 'truth' or 'lie') for both types of presentation. Regardless of type of presentation or subjects' sex, subjects took approximately 200 msec. longer to lie than to tell the truth in response to each question (p<.001). There were significant correlations between truthful response times to auditorially presented questions and Eysenck 'Neuroticism' scores. There was also a significant correlation for women between mean individual lie-minus-truth time to auditorially presented questions and Eysenck 'Lie' scores. These preliminary data suggest that response time is systematically longer when telling a lie and that personality variables may play a part in this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.