Objective-Generalized social phobia involves fear/avoidance, specifically of social situations, whereas generalized anxiety disorder involves intrusive worry about diverse circumstances. It remains unclear the degree to which these two, often comorbid, conditions represent distinct disorders or alternative presentations of a single, core underlying pathology. Functional magnetic resonance imaging assessed the neural response to facial expressions in generalized social phobia and generalized anxiety disorder.Method-Individuals matched on age, IQ, and gender with generalized social phobia without generalized anxiety disorder (N=17), generalized anxiety disorder (N= 17), or no psychopathology (N=17) viewed neutral, fearful, and angry expressions while ostensibly making a simple gender judgment.Results-The patients with generalized social phobia without generalized anxiety disorder showed increased activation to fearful relative to neutral expressions in several regions, including the amygdala, compared to healthy individuals. This increased amygdala response related to selfreported anxiety in patients with generalized social phobia without generalized anxiety disorder. In contrast, patients with generalized anxiety disorder showed significantly less activation to fearful relative to neutral faces compared to the healthy individuals. They did show significantly increased response to angry expressions relative to healthy individuals in a lateral region of the middle frontal gyrus. This increased lateral frontal response related to self-reported anxiety in patients with generalized anxiety disorder.Conclusions-These results suggest that neural circuitry dysfunctions differ in generalized social phobia and generalized anxiety disorder.Generalized social phobia and generalized anxiety disorder are two highly prevalent, chronic, and disabling anxiety disorders (1,2) that are sometimes comorbid. Generalized social phobia involves fear/avoidance, specifically of social situations, whereas generalized anxiety disorder involves intrusive worry about a broader array of everyday life circumstances. Although both have considerable social and economic costs, disagreement exists concerning the degree to which the conditions result from a shared or unique pathophysiology. For example, high rates of comorbidity in cross-sectional and longitudinal studies suggest that the distinction between the two conditions may be relatively subtle at the descriptive level (3,4). On the other hand, data from family-based and therapeutic research suggest the two conditions can be dissociated. Specifically, such dissociation is reflected in patterns of disorder aggregation within families (5), as well as by the fact that generalized anxiety disorder, but not social phobia, responds to most tricyclic antidepressants and to buspirone (6-8). Because no brain-imaging study has directly compared the two conditions, it remains unclear whether the two disorders have dissociable neural correlates.The principal goal of the current study was to inves...
Transient reductions in serotonin levels during tryptophan depletion (TD) are thought to impair reward processing in healthy volunteers, while another facet of the serotonergic system, the serotonin transporter (5-HTTLPR) short allele polymorphism, is implicated in augmented processing of aversive stimuli. We examined the impact and interactions of TD and the serotonin promoter polymorphism genotype on reward and punishment via two forms of instrumental learning: passive avoidance and response reversal. In this study, healthy volunteers (n ¼ 35) underwent rapid TD or control procedures and genotyping (n ¼ 26) of the 5-HTTLPR for long and short allele variants. In the passive avoidance task, tryptophan-depleted volunteers failed to respond sufficiently to rewarded stimuli compared to the control group. Additionally, long allele homozygous individuals (n ¼ 11) were slower to learn to avoid punished stimuli compared to short allele carriers (n ¼ 15). TD alone did not produce measurable deficits in probabilistic response reversal errors. However, a significant drug group by genotype interaction was found indicating that in comparison to short allele carriers, tryptophan-depleted individuals homozygous for the long allele failed to appropriately use punishment information to guide responding. These findings extend prior reports of impaired reward processing in TD to include instrumental learning. Furthermore, they demonstrate behavioral differences in responses to punishing stimuli between long allele homozygotes and short allele carriers when serotonin levels are acutely reduced.
Catechol-O-methyl transferase (COMT) val(108/158)met polymorphism impacts on cortical dopamine levels and may influence functional magnetic resonance (fMRI) measures of task-related neuronal activity. Here, we investigate whether COMT genotype influences cortical activations, particularly prefrontal activations, by interrogating its effect across three tasks that have been associated with the dopaminergic system in a large cohort of healthy volunteers. A total of 50 participants (13 met/met, 23 val/met, and 14 val/val) successfully completed N-Back, Go-NoGo, and Tower of London fMRI tasks. Image analysis was performed using statistical parametric mapping. No significant relationships between COMT genotype groups and frontal lobe activations were observed for any contrast of the three tasks studied. However, the val/val group produced significantly greater deactivation of the right posterior cingulate cortex in two tasks: the Go-NoGo (NoGo vs Go deactivation contrast) and N-Back (2-back vs rest deactivation contrast). For the N-Back task, the modulated deactivation cluster was functionally connected to the precuneus, left middle occipital lobe, and cerebellum. These results do not support findings of prefrontal cortical modulation of activity with COMT genotype, but instead suggest that COMT val/val genotype can modulate the activity of the posterior cingulate and may indicate the potential network effects of COMT genotype on the default mode network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.