The linear modulus, swelling behavior, and high strain response of a set of well-characterized model triblock gels were investigated to understand the effect of homopolymer solubilized within the micelle core on gel structure and mechanical properties. Structural parameters were obtained from small-angle X-ray scattering (SAXS) as well as from selfconsistent field theory (SCFT) calculations. Experimental results are compared with Neo-Hookean and exponentially strain hardening models for gel behavior and rigid filler effects are discussed. The main conclusion is that the addition of homopolymer to the micelle core increases the chain stretching in both the core and coronal blocks. The total extension of a chain for a given external load is fixed by its length; however, the initial prestretch imparted to the chain due to micellization changes with the size of the micelle core and can greatly reduce the amount of extension observed for a given external force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.