The human platelet alloantigens, pjAI and pjA2, comprise a diallelic antigen system located on a component of the platelet fibrinogen receptor, membrane glycoprotein (GP) MIIa. Of the known platelet alloantigens, pIA1 which is carried by 98% of the caucasian population, appears to be the alloantigen that most often provokes neonatal alloimmune thrombocytopenic purpura and posttransfusion purpura. The structural features of the GPIIIa molecule responsible for its antigenicity are as yet unknown. Using the polymerase chain reaction (PcR), we amplified the NH2-terminal region of platelet GPIIIa mRNA derived from PjAe and pIA2 homozygous individuals. Nucleotide sequence analysis of selected amplified cDNA products revealed a C * T polymorphism at base 196 that created a unique Nci I restriction enzyme cleavage site in the p1A2, but not the P1Ae form of GPIIIa cDNA. Subsequent restriction enzyme analysis of cDNAs generated by PcR from 10 p1Al/A1 5 P and 3 p1Al/AZ individuals showed that Nci I digestion permitted clear discrimination between the pIA1 and pIA2 alleles of GPIIIa. All pIA2/A2 individuals studied contain a C at base 196, whereas PIAl homozygotes have a T at this position.This single base change results in a leucine/proline polymorphism at amino acid 33 from the NH2-terminus, and is likely to impart significant differences in the secondary structures of these two allelic forms of the GPIIIa molecule. The ability to perform DNA-typing analysis for peA phenotype may have a number of useful clinical applications, including fetal testing and determination of the phenotype of severely thrombocytopenic individuals.
Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.
Long interspersed elements 1 (L1) are active mobile elements that constitute almost 17% of the human genome. They amplify through a “copy-and-paste” mechanism termed retrotransposition, and de novo insertions related to these elements have been reported to cause 0.2% of genetic diseases. Our previous data demonstrated that the endonuclease complex ERCC1-XPF, which cleaves a 3′ DNA flap structure, limits L1 retrotransposition. Although the ERCC1-XPF endonuclease participates in several different DNA repair pathways, such as single-strand annealing, or in telomere maintenance, its recruitment to DNA lesions is best characterized in the nucleotide excision repair (NER) pathway. To determine if the NER pathway prevents the insertion of retroelements in the genome, we monitored the retrotransposition efficiencies of engineered L1 elements in NER-deficient cells and in their complemented versions. Core proteins of the NER pathway, XPD and XPA, and the lesion binding protein, XPC, are involved in limiting L1 retrotransposition. In addition, sequence analysis of recovered de novo L1 inserts and their genomic locations in NER-deficient cells demonstrated the presence of abnormally large duplications at the site of insertion, suggesting that NER proteins may also play a role in the normal L1 insertion process. Here, we propose new functions for the NER pathway in the maintenance of genome integrity: limitation of insertional mutations caused by retrotransposons and the prevention of potentially mutagenic large genomic duplications at the site of retrotransposon insertion events.
The prediction of neonatal alloimmune thrombocytopenia (NATP) in affected families has, in the past, been based on information about gene frequencies of the antigen systems involved, parental phenotyping, and fetal platelet counts. We explored the feasibility of allele- specific oligonucleotide probe typing for PIA antigens to determine the risk of second or subsequent fetuses in families where one infant had a diagnosis of anti-PIA1-mediated NATP. A total of eight families at risk for delivering an affected fetus were studied with both serologic and oligonucleotide typing. The correlation between serologic and oligonucleotide PIA types was 100%. Similarly, in an additional eight families not at risk for PIA1-mediated NATP, serologic and oligonucleotide typing maintained a perfect correlation. DNA isolated from fetal leukocytes as well as fetal amniocytes was successfully typed using this technology. Oligonucleotide-based typing of fetuses at risk for NATP whose fathers are heterozygous for the PIA antigens allows early recognition of affected fetuses so that prenatal therapy of mothers can be instituted if necessary. When fetuses are found to be unaffected, invasive, and/or expensive, prenatal interventions can be avoided.
Non-long terminal repeat retroelements continue to impact the human genome through cis-activity of long interspersed element-1 (LINE-1 or L1) and trans-mobilization of Alu. Current activity is dominated by modern subfamilies of these elements, leaving behind an evolutionary graveyard of extinct Alu and L1 subfamilies. Because Alu is a nonautonomous element that relies on L1 to retrotranspose, there is the possibility that competition between these elements has driven selection and antagonistic coevolution between Alu and L1. Through analysis of synonymous versus nonsynonymous codon evolution across L1 subfamilies, we find that the C-terminal ORF2 cys domain experienced a dramatic increase in amino acid substitution rate in the transition from L1PA5 to L1PA4 subfamilies. This observation coincides with the previously reported rapid evolution of ORF1 during the same transition period. Ancestral Alu sequences have been previously reconstructed, as their short size and ubiquity have made it relatively easy to retrieve consensus sequences from the human genome. In contrast, creating constructs of extinct L1 copies is a more laborious task. Here, we report our efforts to recreate and evaluate the retrotransposition capabilities of two ancestral L1 elements, L1PA4 and L1PA8 that were active ∼18 and ∼40 Ma, respectively. Relative to the modern L1PA1 subfamily, we find that both elements are similarly active in a cell culture retrotransposition assay in HeLa, and both are able to efficiently trans-mobilize Alu elements from several subfamilies. Although we observe some variation in Alu subfamily retrotransposition efficiency, any coevolution that may have occurred between LINEs and SINEs is not evident from these data. Population dynamics and stochastic variation in the number of active source elements likely play an important role in individual LINE or SINE subfamily amplification. If coevolution also contributes to changing retrotransposition rates and the progression of subfamilies, cell factors are likely to play an important mediating role in changing LINE-SINE interactions over evolutionary time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.