Pharmaceutical agents despite their efficacy to treat disease can cause additional unwanted cardiovascular side effects. Cardiotoxicity is characterized by changes in either the function and/or structure of the myocardium. Over recent years, functional cardiotoxicity has received much attention, however morphological damage to the myocardium and/or loss of viability still requires improved detection and mechanistic insights. A human 3D cardiac microtissue containing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), cardiac endothelial cells and cardiac fibroblasts was used to assess their suitability to detect drug induced changes in cardiac structure. Histology and clinical pathology confirmed these cardiac microtissues were morphologically intact, lacked a necrotic/apoptotic core and contained all relevant cell constituents. High-throughput methods to assess mitochondrial membrane potential, endoplasmic reticulum integrity and cellular viability were developed and 15 FDA approved structural cardiotoxins and 14 FDA approved non-structural cardiotoxins were evaluated. We report that cardiac microtissues provide a high-throughput experimental model that is both able to detect changes in cardiac structure at clinically relevant concentrations and provide insights into the phenotypic mechanisms of this liability.
Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.
Multicellular tumor spheroids (MTS) are a well-established model system for drug development and are a valuable in vitro research tool for use prior to employing animal models. These 3D-cell cultures are thought to display chemical gradients of oxygen and nutrients throughout their structure, giving rise to distinct microenvironments in radial layers, thus mimicking the pathophysiological environment of a tumor. Little is known about the localized distributions of metabolites within these microenvironments. To address this, here we utilize high spectral resolution Fourier-transform ion cyclotron resonance (FT-ICR), MALDI mass spectrometry imaging (MSI) to image the distribution of endogenous metabolites in breast cancer MCF-7 spheroids. We show that known specific metabolite markers (adenosine phosphates and glutathione) indicate that the central region of these cell culture models experiences increased hypoxic and oxidative stress. By using discriminatory analysis, we have identified which m/z values localize towards the outer proliferative or central hypoxic regions of an MTS and have assigned elemental formula with sub-ppm error. Using this information, we have mapped these metabolites back to distinct pathways to improve our understanding of the molecular environment and biochemistry of these tumor models.
Current clinical poly (ADP-ribose) polymerase (PARP) inhibitors target both PARP1 and PARP2 and they all cause clinical cytopenias with varying severity. Understanding the mechanism underlying the hematological toxicity of these agents is key for the rational design of a best-in-class molecule with greater therapeutic potential, both as monotherapy and in combination with chemotherapy. We validated the rat as a physiologically competent translational model to investigate PARP inhibitor-driven hematological toxicity. Here we demonstrate that in comparison with a representative PARP1/2 inhibitor, olaparib, the novel highly potent PARP1-selective inhibitor and trapper, AZD5305, does not cause hematological toxicity as a monotherapy in pre-clinical rat models at predicted clinically efficacious exposures. Thus, monotherapy toxicity of PARP1/2 inhibitors likely depends on PARP2 inhibition. Next, we proceeded to investigate whether PARP1-selective inhibition would be better tolerated in chemotherapy combinations than PARP1/2 inhibition. We performed a rat in vivo study comparing daily olaparib or daily AZD5305 at matched exposures in combination with one cycle of intravenous carboplatin for 14 days. We show that olaparib and PARP1-selective AZD5305 cause comparable exacerbation of carboplatin-induced peripheral blood effects implicating PARP1 inhibition in combination-driven hematological toxicity. Importantly however, AZD5305+carboplatin showed improved hematological tolerability over olaparib+carboplatin because peripheral reticulocytes and bone marrow erythroid precursor cells recover in the presence of continuous AZD5305 but not in the presence of continuous olaparib. Importantly, this differentiation was maintained in a subsequent rat in vivo study, where daily olaparib or daily AZD5305 were combined with two three-weekly cycles of a higher dose of carboplatin to more closely mimic clinical protocol. AZD5305+carboplatin was associated with a more rapid recovery of reticulocytes, red blood cells and hemoglobin following both cycles of carboplatin. In contrast, olaparib+carboplatin was associated with a slower recovery resulting in a more sustained reduction in red cells and hemoglobin during both the first and second cycle of carboplatin. Thus, in rodents the novel potent PARP1-selective inhibitor AZD5305 has improved hematological tolerability over dual PARP1/2 inhibitors, both as a monotherapy and in carboplatin combinations. Citation Format: Sonja J. Gill, Ruth Macdonald, Carmen Pin, Rob Collins, Emilyanne Leonard, Gareth Maglennon, Andy Pike, Peter Cotton, Glen Hawthorne, Jordan Pugh, Rebecca Sargeant, Daniel Sutton, James Atkinson, Stewart Jones, Sarah Chinery, Mark Anderton. The novel PARP1-selective inhibitor AZD5305 has reduced hematological toxicity when compared to PARP1/2 inhibitors in pre-clinical models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1374.
Background Extracellular microRNAs enter kidney cells and modify gene expression. We used a Dicer-hepatocyte-specific microRNA conditional-knock-out (Dicer-CKO) mouse to investigate microRNA transfer from liver to kidney. Methods Dicer flox/flox mice were treated with a Cre recombinase-expressing adenovirus (AAV8) to selectively inhibit hepatocyte microRNA production (Dicer-CKO). Organ microRNA expression was measured in health and following paracetamol toxicity. The functional consequence of hepatic microRNA transfer was determined by measuring the expression and activity of cytochrome P450 2E1 (target of the hepatocellular miR-122), and by measuring the effect of serum extracellular vesicles (ECVs) on proximal tubular cell injury. In humans with liver injury we measured microRNA expression in urinary ECVs. A murine model of myocardial infarction was used as a non-hepatic model of microRNA release. Findings Dicer-CKO mice demonstrated a decrease in kidney miR-122 in the absence of other microRNA changes. During hepatotoxicity, miR-122 increased in kidney tubular cells; this was abolished in Dicer-CKO mice. Depletion of hepatocyte microRNA increased kidney cytochrome P450 2E1 expression and activity. Serum ECVs from mice with hepatotoxicity increased proximal tubular cell miR-122 and prevented cisplatin toxicity. miR-122 increased in urinary ECVs during human hepatotoxicity. Transfer of microRNA was not restricted to liver injury –miR-499 was released following cardiac injury and correlated with an increase in the kidney. Interpretation Physiological transfer of functional microRNA to the kidney is increased by liver injury and this signalling represents a new paradigm for understanding the relationship between liver injury and renal function. Funding Kidney Research UK, Medical Research Scotland, Medical Research Council.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.