Non-classical photon sources are a crucial resource for distributed quantum networks. Photons generated from matter systems with memory capability are particularly promising, as they can be integrated into a network where each source is used on-demand. Among all kinds of solid state and atomic quantum memories, room-temperature atomic vapours are especially attractive due to their robustness and potential scalability. To-date room-temperature photon sources have been limited either in their memory time or the purity of the photonic state. Here we demonstrate a single-photon source based on room-temperature memory. Following heralded loading of the memory, a single photon is retrieved from it after a variable storage time. The single-photon character of the retrieved field is validated by the strong suppression of the two-photon component with antibunching as low as $${g}_{{\rm{RR| W = 1}}}^{(2)}=0.20\pm 0.07$$
g
RR∣W=1
(
2
)
=
0.20
±
0.07
. Non-classical correlations between the heralding and the retrieved photons are maintained for up to $${\tau }_{{\rm{NC}}}^{{\mathcal{R}}}=(0.68\pm 0.08)\ {\rm{ms}}$$
τ
NC
R
=
(
0.68
±
0.08
)
ms
, more than two orders of magnitude longer than previously demonstrated with other room-temperature systems. Correlations sufficient for violating Bell inequalities exist for up to τBI = (0.15 ± 0.03) ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.