Potentially relevant incidental findings are very common in wb-MRI research but the nature of these findings remains unclear in most cases. This requires dedicated management to protect subjects' welfare and research integrity.
Study DesignWe assessed volume following nucleoplasty disc decompression in lower lumbar spines from cadaveric pigs using 7.1Tesla magnetic resonance imaging (MRI).PurposeTo investigate coblation-induced volume reductions as a possible mechanism underlying nucleoplasty.MethodsWe assessed volume following nucleoplastic disc decompression in pig spines using 7.1-Tesla MRI. Volumetry was performed in lumbar discs of 21 postmortem pigs. A preoperative image data set was obtained, volume was determined, and either disc decompression or placebo therapy was performed in a randomized manner. Group 1 (nucleoplasty group) was treated according to the usual nucleoplasty protocol with coblation current applied to 6 channels for 10 seconds each in an application field of 360°; in group 2 (placebo group) the same procedure was performed but without coblation current. After the procedure, a second data set was generated and volumes calculated and matched with the preoperative measurements in a blinded manner. To analyze the effectiveness of nucleoplasty, volumes between treatment and placebo groups were compared.ResultsThe average preoperative nucleus volume was 0.994 ml (SD: 0.298 ml). In the nucleoplasty group (n = 21) volume was reduced by an average of 0.087 ml (SD: 0.110 ml) or 7.14%. In the placebo group (n = 21) volume was increased by an average of 0.075 ml (SD: 0.075 ml) or 8.94%. The average nucleoplasty-induced volume reduction was 0.162 ml (SD: 0.124 ml) or 16.08%. Volume reduction in lumbar discs was significant in favor of the nucleoplasty group (p<0.0001).ConclusionsOur study demonstrates that nucleoplasty has a volume-reducing effect on the lumbar nucleus pulposus in an animal model. Furthermore, we show the volume reduction to be a coblation effect of nucleoplasty in porcine discs.
Anthropometric measures and menopausal status contribute to a large variability in contrast enhancement of normal breast parenchyma. This might influence the interpretation of contrast enhancement kinetics of breast lesions and current strategies for determining contrast medium dose for breast MR imaging.
Standard radiographs, as a fast and inexpensive technique, allow the expected size progression of heterotopic ossifications during maturation to be estimated, which is relevant in terms of therapeutic decisions, patient mobilization, and neurological rehabilitation.
Computed tomography angiography is a noninvasive and reliable tool for evaluating patients with EC-IC bypass. Perfusion CT allows monitoring of hemodynamic changes after bypass surgery. The combination of both modalities enables noninvasive anatomical and functional analysis of superficial temporal artery-middle cerebral artery anastomoses using a single CT protocol. Hemodynamic evaluation of patients with occlusive cerebrovascular disease before and after surgery may improve the prediction of outcome and may help identify patients in whom a bypass procedure can be performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.