Decreases in Fe status have been reported in military women during initial training periods of 8–10 weeks. The present study aimed to characterise Fe status and associations with physical performance in female New Zealand Army recruits during a 16-week basic combat training (BCT) course. Fe status indicators – Hb, serum ferritin (sFer), soluble transferrin receptor (sTfR), transferrin saturation (TS) and erythrocyte distribution width (RDW) – were assessed at the beginning (baseline) and end of BCT in seventy-six volunteers without Fe-deficiency non-anaemia (sFer <12 µg/l; Hb ≥120 g/l) or Fe-deficiency anaemia (sFer <12 µg/l; Hb <120 g/l) at baseline or a C-reactive protein >10 mg/l at baseline or end. A timed 2·4 km run followed by maximum press-ups were performed at baseline and midpoint (week 8) to assess physical performance. Changes in Fe status were investigated using paired t tests and associations between Fe status and physical performance evaluated using Pearson correlation coefficients. sFer (56·6 (sd 33·7) v. 38·4 (sd 23·8) µg/l) and TS (38·8 (sd 13·9) v. 34·4 (sd 11·5) %) decreased (P<0·001 and P=0·014, respectively), while sTfR (1·21 (sd 0·27) v. 1·39 (sd 0·35) mg/l) and RDW (12·8 (sd 0·6) v. 13·2 (sd 0·7) %) increased (P<0·001) from baseline to end. Hb (140·6 (sd 7·5) v. 142·9 (sd 7·9) g/l) increased (P=0·009) during BCT. At end, sTfR was positively (r 0·29, P=0·012) and TS inversely associated (r –0·32, P=0·005) with midpoint run time. There were no significant correlations between Fe status and press-ups. Storage and functional Fe parameters indicated a decline in Fe status in female recruits during BCT. Correlations between tissue-Fe indicators and run times suggest impaired aerobic fitness. Optimal Fe status appears paramount for enabling success in female recruits during military training.
BackgroundFiber intakes in developed countries are generally below those recommended by relevant authorities. Given that many people consume fiber-depleted refined-grain products, adding functional fiber will help to increase fiber intakes. The objective of the study was to determine metabolic and sensory effects of adding fiber to bread.MethodsA double-blind pair of randomized crossover trials with a two-week washout in which two fiber-containing breads were compared with control bread. The functional fiber (fruit fiber and FibreMax™) was added to yield 10 g fiber per serve (two slices). Eighty participants (n = 37 fruit fiber and n = 43 FibreMax™) consumed one serve of bread (fiber or control) followed three hours later by a pasta meal consumed ad libitum. Outcome measures included glycemia, satiety, palatability, gastrointestinal wellbeing, visual appeal and subsequent energy intake of the pasta meal. Multivariate regression was undertaken to test for differences between treatment and control for blood glucose, satiety, and cumulative energy intake. Satiety responses were also compared by splitting the data into an immediate response after eating (0–30 min) and a return to hunger analysis (30–180 min). A Wilcoxon sign rank test was used for the first component (0–30 min) and Wilcoxon matched-pairs signed-rank test for the second component (30–180 min). Between treatment differences for gastrointestinal wellbeing were tested using Pearson’s chi-square test or Fisher’s exact test.ResultsConsumption of the fruit fiber bread reduced postprandial glycemia by 35% (95% CI 13 to 51; P = 0.004) and cumulative energy intake by 368 kJ (95% CI 163 to 531; P = 0.001). There was little influence on satiety and the bread was rated as having poor taste and smell whilst generating feelings of nausea in some participants. FibreMax™ enriched bread reduced glycemia by 43% (95% CI 17 to 61; P = 0.004) without influence on energy intake or satiety. Apart from a lower visual appeal, the FibreMax™ bread was palatable. Neither bread caused gastrointestinal discomfort related to flatulence or bloating.ConclusionsEnriching bread with 10 g of functional fiber per serve is feasible although reformulation is needed to create not only an acceptable bread, but a desirable product.
The data indicate a partial disconnection between appetite and desirability for sweet taste. Physiological and psychosocial reward systems may make it difficult for people to resist sweet tasting foods and beverages. Targeting familial and cultural practices that discourage the consumption of added sugar foods might be useful to combat desire-driven food intake.
Introduction Suboptimal iron status is an issue for women joining the military because of its association with impaired aerobic performance, yet no studies have investigated dietary and non-dietary determinants of iron status simultaneously in this population. The purpose of this study was to explore associations between iron stores, dietary patterns (DPs), and potential non-dietary determinants of iron status in premenopausal women at the commencement of basic military training (BMT) in the New Zealand Army. Methods During week 1 of BMT, demographic, body composition, lifestyle, medical history, and dietary data were measured as potential determinants of serum ferritin (SF) in 101 participants. Following univariate analysis, age, body fat percentage, previous blood donation, at least 6 h of exercise per week that raised the heart rate, and a vegetarian DP were analyzed using a multiple linear regression model. Results An increase in body fat percentage was associated with increased SF (P < .009), although blood donation in the past year decreased SF (P < .011) compared to those participants who did not donate blood. There was no association between SF and a vegetarian DP or hours of exercise per week. The model explained 17.5% of the variance in SF at the commencement of BMT. Conclusion Body fat percentage and blood donation in the past year were the strongest determinants of iron stores in healthy premenopausal women commencing BMT. It is recommended that women joining the New Zealand Army are provided information to maintain or improve their iron status based on these findings. This includes clinical screening of iron status, advice for women considering blood donation, and dietary advice regarding total energy requirements and iron bioavailability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.