OBJECTIVEMonogenic diabetes is rare but is an important diagnosis in pediatric diabetes clinics. These patients are often not identified as this relies on the recognition of key clinical features by an alert clinician. Biomarkers (islet autoantibodies and C-peptide) can assist in the exclusion of patients with type 1 diabetes and allow systematic testing that does not rely on clinical recognition. Our study aimed to establish the prevalence of monogenic diabetes in U.K. pediatric clinics using a systematic approach of biomarker screening and targeted genetic testing. RESEARCH DESIGN AND METHODSWe studied 808 patients (79.5% of the eligible population) <20 years of age with diabetes who were attending six pediatric clinics in South West England and Tayside, Scotland. Endogenous insulin production was measured using the urinary C-peptide creatinine ratio (UCPCR). C-peptide-positive patients (UCPCR ‡0.2 nmol/mmol) underwent islet autoantibody (GAD and IA2) testing, with patients who were autoantibody negative undergoing genetic testing for all 29 identified causes of monogenic diabetes. RESULTSA total of 2.5% of patients (20 of 808 patients) (95% CI 1.6-3.9%) had monogenic diabetes (8 GCK, 5 HNF1A, 4 HNF4A, 1 HNF1B, 1 ABCC8, 1 INSR). The majority (17 of 20 patients) were managed without insulin treatment. A similar proportion of the population had type 2 diabetes (3.3%, 27 of 808 patients). CONCLUSIONSThis large systematic study confirms a prevalence of 2.5% of patients with monogenic diabetes who were <20 years of age in six U.K. clinics. This figure suggests that ∼50% of the estimated 875 U.K. pediatric patients with monogenic diabetes have still not received a genetic diagnosis. This biomarker screening pathway is a practical approach that can be used to identify pediatric patients who are most appropriate for genetic testing.
One of the most promising rehabilitation strategies for spinal cord injury is weight-supported treadmill training. This strategy seeks to re-train the spinal cord below the level of injury to generate a meaningful pattern of movement. However, the number of step cycles that can be accomplished is limited by the poor weight-bearing capability of the neuromuscular system after injury. We have begun to study swimming as a rehabilitation strategy that allows for high numbers of steps and a high step-cycle frequency in a standard rat model of contusive spinal cord injury. The purpose of the present study was to evaluate the effect of swimming as a rehabilitation strategy in rats with contusion injuries at T9. We used a swimming strategy with or without cutaneous feedback based on original work in the chick by Muir and colleagues. Adult female rats (n=27) received moderately-severe contusion injuries at T9. Walking and swimming performance were evaluated using the Open-Field Locomotor Scale (BBB; Basso et al., 1995) and a novel swimming assessment, the Louisville Swimming Scale (LSS). Rats that underwent swim-training with or without cutaneous feedback showed a significant improvement in hindlimb function during swimming compared to untrained animals. Rats that underwent swim-training without cutaneous feedback showed less improvement than those trained with cutaneous feedback. Rats in the non-swimming group demonstrated little improvement over the course of the study. All three groups showed the expected improvement in over-ground walking and had similar terminal BBB scores. These findings suggest that animals re-acquire the ability to swim only if trained and that cutaneous feedback improves the re-training process. Further, these data suggest that the normal course of recovery of over-ground walking following moderately-severe contusion injuries at T9 is the result of a re-training process.
While activity-based rehabilitation is one of the most promising therapeutic approaches for spinal cord injury, the necessary components for optimal locomotor retraining have not yet been determined. Currently, a number of different activity-based approaches are being investigated including body weight-supported treadmill training (with and without manual assistance), robotically-assisted treadmill training, bicycling and swimming, among others. We recently showed, in the adult rat, that intensive rehabilitation based on swimming brought about significant improvements in hindlimb performance during swimming but did not alter the normal course of recovery of over-ground walking . However, swimming lacks the phasic limb-loading and plantar cutaneous feedback thought to be important for weight-supported step training. So, we are investigating an innovative approach based on walking in shallow water where buoyancy provides some body weight support and balance while still allowing for limb-loading and appropriate cutaneous afferent feedback during retraining. Thus, the aim of this study is to determine if spinal cord injured animals show improved overground locomotion following intensive body-weight supported locomotor training in shallow water. The results show that training in shallow water successfully improved stepping in shallow water, but was not able to bring about significant improvements in overground locomotion despite the fact that the shallow water provides sufficient body weight support to allow acutely injured rats to generate frequent plantar stepping. These observations support previous suggestions that incompletely injured animals retrain themselves while moving about in their cages and that daily training regimes are not able to improve upon this already substantial functional improvement due to a ceiling effect, rather than task-specificity, per se. These results also support the concept that moderately-severe thoracic contusion injuries decrease the capacity for body weight support, but do not decrease the capacity for pattern generation. In contrast, animals with severe contusion injuries could not support their body weight nor could they generate a locomotor pattern when provided with body weight support via buoyancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.