We live in an increasingly interconnected world, with many organizations operating across countries or even continents. To serve their global user base, organizations are replacing their legacy DBMSs with cloud-based systems capable of scaling OLTP workloads to millions of users.CockroachDB is a scalable SQL DBMS that was built from the ground up to support these global OLTP workloads while maintaining high availability and strong consistency. Just like its namesake, CockroachDB is resilient to disasters through replication and automatic recovery mechanisms.This paper presents the design of CockroachDB and its novel transaction model that supports consistent geo-distributed transactions on commodity hardware. We describe how CockroachDB replicates and distributes data to achieve fault tolerance and high performance, as well as how its distributed SQL layer automatically scales with the size of the database cluster while providing the standard SQL interface that users expect. Finally, we present a comprehensive performance evaluation and share a couple of case studies of CockroachDB users. We conclude by describing lessons learned while building CockroachDB over the last five years.
For data-intensive applications with many concurrent users, modern distributed main memory database management systems (DBMS) provide the necessary scale-out support beyond what is possible with single-node systems. These DBMSs are optimized for the short-lived transactions that are common in on-line transaction processing (OLTP) workloads. One way that they achieve this is to partition the database into disjoint subsets and use a single-threaded transaction manager per partition that executes transactions one-ata-time in serial order. This minimizes the overhead of concurrency control mechanisms, but requires careful partitioning to limit distributed transactions that span multiple partitions. Previous methods used off-line analysis to determine how to partition data, but the dynamic nature of these applications means that they are prone to hotspots. In these situations, the DBMS needs to reconfigure how data is partitioned in real-time to maintain performance objectives. Bringing the system off-line to reorganize the database is unacceptable for on-line applications.To overcome this problem, we introduce the Squall technique for supporting live reconfiguration in partitioned, main memory DBMSs. Squall supports fine-grained repartitioning of databases in the presence of distributed transactions, high throughput client workloads, and replicated data. An evaluation of our approach on a distributed DBMS shows that Squall can reconfigure a database with no downtime and minimal overhead on transaction latency.
On-line transaction processing (OLTP) database management systems (DBMSs) often serve time-varying workloads due to daily, weekly or seasonal fluctuations in demand, or because of rapid growth in demand due to a company's business success. In addition, many OLTP workloads are heavily skewed to "hot" tuples or ranges of tuples. For example, the majority of NYSE volume involves only 40 stocks. To deal with such fluctuations, an OLTP DBMS needs to be elastic; that is, it must be able to expand and contract resources in response to load fluctuations and dynamically balance load as hot tuples vary over time. This paper presents E-Store, an elastic partitioning framework for distributed OLTP DBMSs. It automatically scales resources in response to demand spikes, periodic events, and gradual changes in an application's workload. E-Store addresses localized bottlenecks through a two-tier data placement strategy: cold data is distributed in large chunks, while smaller ranges of hot tuples are assigned explicitly to individual nodes. This is in contrast to traditional single-tier hash and range partitioning strategies. Our experimental evaluation of E-Store shows the viability of our approach and its efficacy under variations in load across a cluster of machines. Compared to single-tier approaches, E-Store improves throughput by up to 130% while reducing latency by 80%. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.