Background In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov ( NCT04381936 ). Findings Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding UK Research and Innovation (Medical Research Council) and National Institute of Health Research.
Summary Introduction The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading approach to the identification of novel biological pathways for human disease. To date, GWAS have had been limited by relatively small sample sizes and yielded relatively few loci associated with ischemic stroke The National Institute of Neurological Disorders Stroke Genetics Network (NINDS-SiGN) is an international consortium that has taken a systematic approach to phenotyping and produced the largest ischemic stroke GWAS to date. Methods In order to identify genetic loci associated with ischemic stroke, we performed a two-stage genome-wide association study. The first stage consisted of 16,851 cases with state-of-the-art phenotyping and 32,473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtyped by centrally trained and certified investigators using the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identify samples genotyped on (nearly) identical arrays and of similar genetic ancestral background. Data was cleaned and imputed using dense imputation reference panels generated from whole-genome sequence data. Genome-wide testing was performed within each stratum for each available phenotype, and summary level results were combined using inverse variance-weighted fixed effects meta-analysis. The second stage consisted of in silico look-ups of 1,372 SNPs in 20,941 cases and 364,736 stroke-free controls, with cases previously subtyped using the TOAST classification system according to local standards. The two stages were then jointly analyzed in a final meta-analysis. Findings We identified a novel locus at 1p13.2 near TSPAN2 associated with large artery atherosclerosis (LAA)-related stroke (stage I OR for the G allele at rs12122341 = 1·21, p = 4.50 × 10−8; stage II OR = 1·19, p = 1·30 × 10−9). We also confirmed four loci robustly associated with ischemic stroke and reported in prior studies, including PITX2 and ZFHX3 for cardioembolic stroke, and HDAC9 for LAA stroke. The 12q24 locus near ALDH2, originally associated with all ischemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke. Other loci, including NINJ2, were not confirmed. Interpretation Our results identify a novel LAA-stroke susceptibility gene and now indicate that all loci implicated by GWAS to date are subtype specific. Follow-up studies will be necessary to determine whether the locus near TSPAN2 yields a novel therapeutic approach to stroke prevention. Given the subtype-specificity of these associations, the rich phenotyping available in SiGN is likely to prove vital for further genetic discovery in ischemic stroke. Funding National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH).
ObjectiveLong-term follow-up of population-based prospective studies is often achieved through linkages to coded regional or national health care data. Our knowledge of the accuracy of such data is incomplete. To inform methods for identifying stroke cases in UK Biobank (a prospective study of 503,000 UK adults recruited in middle-age), we systematically evaluated the accuracy of these data for stroke and its main pathological types (ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage), determining the optimum codes for case identification.MethodsWe sought studies published from 1990-November 2013, which compared coded data from death certificates, hospital admissions or primary care with a reference standard for stroke or its pathological types. We extracted information on a range of study characteristics and assessed study quality with the Quality Assessment of Diagnostic Studies tool (QUADAS-2). To assess accuracy, we extracted data on positive predictive values (PPV) and—where available—on sensitivity, specificity, and negative predictive values (NPV).Results37 of 39 eligible studies assessed accuracy of International Classification of Diseases (ICD)-coded hospital or death certificate data. They varied widely in their settings, methods, reporting, quality, and in the choice and accuracy of codes. Although PPVs for stroke and its pathological types ranged from 6–97%, appropriately selected, stroke-specific codes (rather than broad cerebrovascular codes) consistently produced PPVs >70%, and in several studies >90%. The few studies with data on sensitivity, specificity and NPV showed higher sensitivity of hospital versus death certificate data for stroke, with specificity and NPV consistently >96%. Few studies assessed either primary care data or combinations of data sources.ConclusionsParticular stroke-specific codes can yield high PPVs (>90%) for stroke/stroke types. Inclusion of primary care data and combining data sources should improve accuracy in large epidemiological studies, but there is limited published information about these strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.