Service Email Alerting click here. top right corner of the article or Receive free email alerts when new articles cite this article-sign up in the box at the http://genome.cshlp.org/subscriptions
Much effort has been dedicated to developing circulating tumor cells (CTC) as a noninvasive cancer biopsy, but with limited success as yet. In this study, we combine a method for isolation of highly pure CTCs using immunomagnetic enrichment/fluorescence-activated cell sorting with advanced whole genome sequencing (WGS), based on long fragment read technology, to illustrate the utility of an accurate, comprehensive, phased, and quantitative genomic analysis platform for CTCs. Whole genomes of 34 CTCs from a patient with metastatic breast cancer were analyzed as 3,072 barcoded subgenomic compartments of long DNA. WGS resulted in a read coverage of 23× per cell and an ensemble call rate of >95%. These barcoded reads enabled accurate detection of somatic mutations present in as few as 12% of CTCs. We found in CTCs a total of 2,766 somatic single-nucleotide variants and 543 indels and multi-base substitutions, 23 of which altered amino acid sequences. Another 16,961 somatic single nucleotide variant and 8,408 indels and multi-base substitutions, 77 of which were nonsynonymous, were detected with varying degrees of prevalence across the 34 CTCs. On the basis of our whole genome data of mutations found in all CTCs, we identified driver mutations and the tissue of origin of these cells, suggesting personalized combination therapies beyond the scope of most gene panels. Taken together, our results show how advanced WGS of CTCs can lead to high-resolution analyses of cancers that can reliably guide personalized therapy. .
Currently, the methods available for preimplantation genetic diagnosis (PGD) of in vitro fertilized (IVF) embryos do not detect de novo single-nucleotide and short indel mutations, which have been shown to cause a large fraction of genetic diseases. Detection of all these types of mutations requires whole-genome sequencing (WGS). In this study, advanced massively parallel WGS was performed on three 5-to 10-cell biopsies from two blastocyst-stage embryos. Both parents and paternal grandparents were also analyzed to allow for accurate measurements of false-positive and false-negative error rates. Overall, >95% of each genome was called. In the embryos, experimentally derived haplotypes and barcoded read data were used to detect and phase up to 82% of de novo single base mutations with a false-positive rate of about one error per Gb, resulting in fewer than 10 such errors per embryo. This represents a~100-fold lower error rate than previously published from 10 cells, and it is the first demonstration that advanced WGS can be used to accurately identify these de novo mutations in spite of the thousands of false-positive errors introduced by the extensive DNA amplification required for deep sequencing. Using haplotype information, we also demonstrate how small de novo deletions could be detected. These results suggest that phased WGS using barcoded DNA could be used in the future as part of the PGD process to maximize comprehensiveness in detecting disease-causing mutations and to reduce the incidence of genetic diseases.
Current screening methods for ovarian cancer can only detect advanced disease. Earlier detection has proved difficult because the molecular precursors involved in the natural history of the disease are unknown. To identify early driver mutations in ovarian cancer cells, we used dense whole genome sequencing of micrometastases and microscopic residual disease collected at three time points over three years from a single patient during treatment for high-grade serous ovarian cancer (HGSOC). The functional and clinical significance of the identified mutations was examined using a combination of population-based whole genome sequencing, targeted deep sequencing, multi-center analysis of protein expression, loss of function experiments in an in-vivo reporter assay and mammalian models, and gain of function experiments in primary cultured fallopian tube epithelial (FTE) cells. We identified frequent mutations involving a 40 kb distal repressor region for the key stem cell differentiation gene SOX2. In the apparently normal FTE, the region was also mutated. This was associated with a profound increase in SOX2 expression (p < 2−16), which was not found in patients without cancer (n = 108). Importantly, we show that SOX2 overexpression in FTE is nearly ubiquitous in patients with HGSOCs (n = 100), and common in BRCA1-BRCA2 mutation carriers (n = 71) who underwent prophylactic salpingo-oophorectomy. We propose that the finding of SOX2 overexpression in FTE could be exploited to develop biomarkers for detecting disease at a premalignant stage, which would reduce mortality from this devastating disease.
BackgroundSince the completion of the Human Genome Project in 2003, it is estimated that more than 200,000 individual whole human genomes have been sequenced. A stunning accomplishment in such a short period of time. However, most of these were sequenced without experimental haplotype data and are therefore missing an important aspect of genome biology. In addition, much of the genomic data is not available to the public and lacks phenotypic information.FindingsAs part of the Personal Genome Project, blood samples from 184 participants were collected and processed using Complete Genomics’ Long Fragment Read technology. Here, we present the experimental whole genome haplotyping and sequencing of these samples to an average read coverage depth of 100X. This is approximately three-fold higher than the read coverage applied to most whole human genome assemblies and ensures the highest quality results. Currently, 114 genomes from this dataset are freely available in the GigaDB repository and are associated with rich phenotypic data; the remaining 70 should be added in the near future as they are approved through the PGP data release process. For reproducibility analyses, 20 genomes were sequenced at least twice using independent LFR barcoded libraries. Seven genomes were also sequenced using Complete Genomics’ standard non-barcoded library process. In addition, we report 2.6 million high-quality, rare variants not previously identified in the Single Nucleotide Polymorphisms database or the 1000 Genomes Project Phase 3 data.ConclusionsThese genomes represent a unique source of haplotype and phenotype data for the scientific community and should help to expand our understanding of human genome evolution and function.Electronic supplementary materialThe online version of this article (doi:10.1186/s13742-016-0148-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.