The near complete replacement of somatic chromatin in spermatids is, perhaps, the most striking nuclear event known to the eukaryotic domain. The process is far from being fully understood, but research has nevertheless unraveled its complexity as an expression of histone variants and post-translational modifications that must be finely orchestrated to promote the DNA topological change and compaction provided by the deposition of protamines. That this major transition may not be genetically inert came from early observations that transient DNA strand breaks were detected in situ at chromatin remodeling steps. The potential for genetic instability was later emphasized by our demonstration that a significant number of DNA double-strand breaks (DSBs) are formed and then repaired in the haploid context of spermatids. The detection of DNA breaks by 3′OH end labeling in the whole population of spermatids suggests that a reversible enzymatic process is involved, which differs from canonical apoptosis. We have set the stage for a better characterization of the genetic impact of this transition by showing that post-meiotic DNA fragmentation is conserved from human to yeast, and by providing tools for the initial mapping of the genome-wide DSB distribution in the mouse model. Hence, the molecular mechanism of post-meiotic DSB formation and repair in spermatids may prove to be a significant component of the well-known male mutation bias. Based on our recent observations and a survey of the literature, we propose that the chromatin remodeling in spermatids offers a proper context for the induction of de novo polymorphism and structural variations that can be transmitted to the next generation.
In mammals, a near complete resetting of DNA methylation (DNAme) is observed during germline establishment. This wave of epigenetic reprogramming is sensitive to the environment which could impair the establishment of an optimal state of the gametes’ epigenome, hence proper embryo development. Yet, we lack a comprehensive understanding of DNAme dynamics during spermatogenesis, especially in rats, the model of choice for toxicological studies. Using a combination of cell sorting and DNA methyl-seq capture, we generated a stage-specific mapping of DNAme in 9 populations of differentiating germ cells from perinatal life to spermiogenesis. DNAme was found to reach its lowest level at gestational day 18, the last demethylated coding regions being associated with negative regulation of cell movement. The following de novo DNAme displayed three different kinetics with common and distinct genomic enrichments, suggesting a non-random process. DNAme variations were also detected at key steps of chromatin remodeling during spermiogenesis, revealing potential sensitivity. These methylome datasets for coding sequences during normal spermatogenesis in rat provide an essential reference for studying epigenetic-related effects of disease or environmental factors on the male germline.
Most pseudogenes are generated when an RNA transcript is reverse-transcribed and integrated into the genome at a new location. Pseudogenes are often considered as an imperfect and silent copy of a functional gene because of the accumulation of numerous mutations in their sequence. Here we report the presence of Pfh8-ps, a Phf8 retrotransposed pseudogene in the mouse genome, which has no disruptions in its coding sequence. We show that this pseudogene is mainly transcribed in testis and can produce a PHF8-PS protein in vivo. As the PHF8-PS protein has a well-conserved JmjC domain, we characterized its enzymatic activity and show that PHF8-PS does not have the intrinsic capability to demethylate H3K9me2 in vitro compared to the parental PHF8 protein. Surprisingly, PHF8-PS does not localize in the nucleus like PHF8, but rather is mostly located at the cytoplasm. Finally, our proteomic analysis of PHF8-PS-associated proteins revealed that PHF8-PS interacts not only with mitochondrial proteins, but also with prefoldin subunits (PFDN proteins) that deliver unfolded proteins to the cytosolic chaperonin complex implicated in the folding of cytosolic proteins. Together, our findings highlighted PHF8-PS as a new pseudogene-derived protein with distinct molecular functions from PHF8.
The majority of pseudogenes are generated when an RNA transcript is reverse-transcribed and integrated into the genome at a new location. Pseudogenes are often considered as an imperfect and silent copy of a functional gene because of the accumulation of numerous mutations in their sequence. Here we report the presence of PHF8-ps, a PHF8 retrotransposed pseudogene in the mouse genome, which has no disruptions in its coding sequence. We showed that this pseudogene was specifically transcribed in testis and can produce a Phf8-ps protein in vivo. As Phf8-ps protein has a well-conserved JmjC domain, we characterized its enzymatic activity and showed that Phf8-ps did not have the intrinsic capability to demethylate H3K9me2 in vitro compared to the parental Phf8 protein. Surprisingly, Phf8-ps did not localize in the nucleus like Phf8 but rather was mostly located at the cytoplasm. Finally, our proteomic analysis of Phf8-ps associated proteins revealed that Phf8-ps interacted with mitochondrial proteins but also with prefoldin subunits (PFDN proteins) that deliver unfolded proteins to the cytosolic chaperonin complex implicated the folding of cytosolic proteins. Together, our findings highlighted Phf8-ps as a new pseudogene-derived protein with distinct molecular functions from Phf8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.