Formative feedback has long been recognised as an effective tool for student learning, and researchers have investigated the subject for decades. However, the actual implementation of formative feedback practices is associated with significant challenges because it is highly time-consuming for teachers to analyse students’ behaviours and to formulate and deliver effective feedback and action recommendations to support students’ regulation of learning. This paper proposes a novel approach that employs learning analytics techniques combined with explainable machine learning to provide automatic and intelligent feedback and action recommendations that support student’s self-regulation in a data-driven manner, aiming to improve their performance in courses. Prior studies within the field of learning analytics have predicted students’ performance and have used the prediction status as feedback without explaining the reasons behind the prediction. Our proposed method, which has been developed based on LMS data from a university course, extends this approach by explaining the root causes of the predictions and by automatically providing data-driven intelligent recommendations for action. Based on the proposed explainable machine learning-based approach, a dashboard that provides data-driven feedback and intelligent course action recommendations to students is developed, tested and evaluated. Based on such an evaluation, we identify and discuss the utility and limitations of the developed dashboard. According to the findings of the conducted evaluation, the dashboard improved students’ learning outcomes, assisted them in self-regulation and had a positive effect on their motivation.
The contributions of this study are: (a) a set of thorough experiments that enable comparisons regarding the influence of different types of features on different classifiers, exploring two languages other than English; and (b) the use of ensembles of clusters of Brown trees and semantic spaces on EHRs to tackle the problem of scarcity of available annotated data.
National cancer registries collect cancer related information from multiple sources and make it available for research. Part of this information originates from pathology reports, and in this pre-study the possibility of a system for automatic extraction of information from Norwegian pathology reports is investigated. A set of 40 pathology reports describing breast cancer tissue samples has been used to develop a rule based system for information extraction. To validate the performance of this system its output has been compared to the data produced by experts doing manual encoding of the same pathology reports. On average, a precision of 80%, a recall of 98% and an F-score of 86% has been achieved, showing that such a system is indeed feasible.
BackgroundText mining and natural language processing of clinical text, such as notes from electronic health records, requires specific consideration of the specialized characteristics of these texts. Deep learning methods could potentially mitigate domain specific challenges such as limited access to in-domain tools and data sets.MethodsA bi-directional Long Short-Term Memory network is applied to clinical notes in Spanish and Swedish for the task of medical named entity recognition. Several types of embeddings, both generated from in-domain and out-of-domain text corpora, and a number of generation and combination strategies for embeddings have been evaluated in order to investigate different input representations and the influence of domain on the final results.ResultsFor Spanish, a micro averaged F1-score of 75.25 was obtained and for Swedish, the corresponding score was 76.04. The best results for both languages were achieved using embeddings generated from in-domain corpora extracted from electronic health records, but embeddings generated from related domains were also found to be beneficial.ConclusionsA recurrent neural network with in-domain embeddings improved the medical named entity recognition compared to shallow learning methods, showing this combination to be suitable for entity recognition in clinical text for both languages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.