Phosphorene, a two-dimensional (2D) monolayer of black phosphorus, has attracted considerable theoretical interest, although the experimental realization of monolayer, bilayer, and few-layer flakes has been a significant challenge. Here we systematically survey conditions for liquid exfoliation to achieve the first large-scale production of monolayer, bilayer, and few-layer phosphorus, with exfoliation demonstrated at the 10-gram scale. We describe a rapid approach for quantifying the thickness of 2D phosphorus and show that monolayer and few-layer flakes produced by our approach are crystalline and unoxidized, while air exposure leads to rapid oxidation and the production of acid. With large quantities of 2D phosphorus now available, we perform the first quantitative measurements of the material's absorption edgewhich is nearly identical to the material's band gap under our experimental conditions-as a function of flake thickness. Our interpretation of the absorbance spectrum relies on an analytical method introduced in this work, allowing the accurate determination of the absorption edge in polydisperse samples of quantum-confined semiconductors. Using this method, we found that the band gap of black phosphorus increased from 0.33 ± 0.02 eV in bulk to 1.88 ± 0.24 eV in bilayers, a range that is larger than any other 2D material. In addition, we quantified a higherenergy optical transition (VB-1 to CB), which changes from 2.0 eV in bulk to 3.23 eV in bilayers. This work describes several methods for producing and analyzing 2D phosphorus while also yielding a class of 2D materials with unprecedented optoelectronic properties.
Phosphorene is emerging as an important two-dimensional semiconductor, but controlling the surface chemistry of phosphorene remains a significant challenge. Here, we show that controlled oxidation of phosphorene determines the composition and spatial distribution of the resulting oxide. We used X-ray photoemission spectroscopy to measure the binding energy shifts that accompany oxidation. We interpreted these spectra by calculating the binding energy shift for 24 likely bonding configurations, including phosphorus oxides and hydroxides located on the basal surface or edges of flakes. After brief exposure to high-purity oxygen or high-purity water vapor at room temperature, we observed phosphorus in the +1 and +2 oxidation states; longer exposures led to a large population of phosphorus in the +3 oxidation state. To provide insight into the spatial distribution of the oxide, transmission electron microscopy was performed at several stages during the oxidation. We found crucial differences between oxygen and water oxidants: while pure oxygen produced an oxide layer on the van der Waals surface, water oxidized the material at pre-existing defects such as edges or steps. We propose a mechanism based on the thermodynamics of electron transfer to interpret these observations. This work opens a route to functionalize the basal surface or edges of two-dimensional (2D) black phosphorus through site-selective chemical reactions and presents the opportunity to explore the synthesis of 2D phosphorene oxide by oxidation.
Zinc spinel ferrite, ZnFe O (ZFO), is an emerging photoanode material for photoelectrochemical (PEC) solar fuel production. However, a lack of fundamental insight into the factors limiting the photocurrent has prevented substantial advance in its performance. Herein, it is found that ZFO nanorod array photoelectrodes with varying crystallinity exhibit vastly different PEC properties. Using a sacrificial hole scavenger (H O ), spatially defined carrier generation, and electrochemical impedance spectroscopy, it is shown that ZFO with a relatively poor crystallinity but a higher spinel inversion degree (due to cation disorder) exhibits superior photogenerated charge separation efficiency and improved majority charge carrier transport compared to ZFO with higher crystallinity and a lower inversion degree. Conversely, the latter condition leads to better charge injection efficiency. Optimization of these factors, and the addition of a nickel-iron oxide cocatalyst overlayer, leads to a new benchmark solar photocurrent for ZFO of 1.0 mA cm at 1.23 V versus reversible hydrogen electrode (RHE) and 1.7 mA cm at 1.6 V versus RHE. Importantly, the observed correlation between the cation disorder and the PEC performance represents a new insight into the factors important to the PEC performance of the spinel ferrites and suggests a path to further improvement.
As organic semiconductors attract increasing attention to application in the fields of bioelectronics and artificial photosynthesis, understanding the factors that determine their robust operation in direct contact with aqueous electrolytes becomes a critical task. Herein we uncover critical factors that influence the operational stability of donor:acceptor bulk heterojunction photocathodes for solar hydrogen production and significantly advance their performance under operational conditions. First, using the direct photoelectrochemical reduction of aqueous Eu 3+ and impedance spectroscopy, we determine that replacing the commonly used fullerene-based electron acceptor with a perylene diimide-based polymer drastically increases operational stability and identify that limiting the photogenerated electron accumulation at the organic/water interface to values of ca. 100 nC cm −2 is required for stable operation (>12 h). These insights are extended to solar-driven hydrogen production using MoS 3 , MoP, or RuO 2 water reduction catalyst overlayers where it is found that the catalyst morphology strongly affects performance due to differences in charge extraction. Optimized performance of bulk heterojunction photocathodes coated with a MoS 3 :MoP composite gave 1 Sun photocurrent density up to 8.7 mA cm −2 at 0 V vs RHE (pH 1). However, increased stability was gained with RuO 2 where initial photocurrent density (>8 mA cm −2 ) deceased only 15% or 33% during continuous operation for 8 or 20 h, respectively, thus demonstrating unprecedented robustness without a protection layer. This performance represents a new benchmark for organic semiconductor photocathodes for solar fuel production and advances the understanding of stability criteria for organic semiconductor/water-junction-based devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.