Abstract:Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
An invited contribution to the mini-series 'Evolutionary ecology of species ranges'. Geographical ranges vary greatly in size and position, even within recent clades, but the factors driving this remain poorly understood. In aquatic beetles, thermal niche has been shown to be related to both the relative range size and position of congeners but whether other physiological parameters play a role is unknown. Metabolic plasticity may be critical for species occupying more variable thermal environments and maintaining this plasticity may trade-off against other physiological processes such as immunocompetence. Here we combine data on thermal physiology with measures of metabolic plasticity and immunocompetence to explore these relationships in Deronectes (Dytiscidae). While variation in latitudinal range extent and position was explained in part by thermal physiology, aspects of metabolic plasticity and immunocompetence also appeared important. Northerly distributed, wide-ranging species apparently used different energy reserves under thermal stress from southern endemic congeners and differed in their antibacterial defences. This is the first indication that these processes may be related to geographical range, and suggests parameters that may be worthy of exploration in other taxa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.