Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.
Urbanization is a major driver of the global loss of biodiversity; to mitigate its adverse effects, it is essential to understand what drives species' patterns of habitat use within the urban matrix. While many animal species are known to exhibit sex differences in habitat use, adaptability to the urban landscape is commonly examined at the species level, without consideration of intraspecific differences. The high energetic demands of pregnancy and lactation in female mammals can lead to sexual differences in habitat use, but little is known of how this might affect their response to urbanization. We predicted that female Pipistrellus pygmaeus would show greater selectivity of forging locations within urban woodland in comparison to males at both a local and landscape scale. In line with these predictions, we found there was a lower probability of finding females within woodlands which were poorly connected, highly cluttered, with a higher edge : interior ratio and fewer mature trees. By contrast, habitat quality and the composition of the surrounding landscape were less of a limiting factor in determining male distributions. These results indicate strong sexual differences in the habitat use of fragmented urban woodland, and this has important implications for our understanding of the adaptability of bats and mammals more generally to urbanization.
Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes.
Species extinctions caused by the destruction and degradation of tropical primary forest may be at least partially mitigated by the expansion of regenerating secondary forest. However, the conservation value of secondary forest remains controversial, and potentially underestimated, since most previous studies have focused on young, single-aged, or isolated stands. Here, we use point-count surveys to compare tropical forest bird communities in 20-120-year-old secondary forest with primary forest stands in central Panama, with varying connectivity between secondary forest sites and extensive primary forest. We found that species richness and other metrics of ecological diversity, as well as the combined population density of all birds, reached a peak in younger (20-year-old) secondary forests and appeared to decline in older secondary forest stands. This counter-intuitive result can be explained by the greater connectivity between younger secondary forests and extensive primary forests at our study site, compared with older secondary forests that are either (a) more isolated or (b) connected to primary forests that are themselves small and isolated. Our results suggest that connectivity with extensive primary forest is a more important determinant of avian species richness and community structure than forest age, and highlight the vital contribution secondary forests can make in conserving tropical bird diversity, so long as extensive primary habitats are adjacent and spatially connected.Abstract in Spanish is available with online material. K E Y W O R D S bird communities, community structure, conservation, landscape management, land-use change, Panama, secondary forest, tropical extinction crisis S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section at the end of the article. How to cite this article: Mayhew RJ, Tobias JA, Bunnefeld L, Dent DH. Connectivity with primary forest determines the value of secondary tropical forests for bird conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.