BackgroundModel repositories such as BioModels Database provide computational models of biological systems for the scientific community. These models contain rich semantic annotations that link model entities to concepts in well-established bio-ontologies such as Gene Ontology. Consequently, thematically similar models are likely to share similar annotations. Based on this assumption, we argue that semantic annotations are a suitable tool to characterize sets of models. These characteristics improve model classification, allow to identify additional features for model retrieval tasks, and enable the comparison of sets of models.ResultsIn this paper we discuss four methods for annotation-based feature extraction from model sets. We tested all methods on sets of models in SBML format which were composed from BioModels Database. To characterize each of these sets, we analyzed and extracted concepts from three frequently used ontologies, namely Gene Ontology, ChEBI and SBO. We find that three out of the methods are suitable to determine characteristic features for arbitrary sets of models: The selected features vary depending on the underlying model set, and they are also specific to the chosen model set. We show that the identified features map on concepts that are higher up in the hierarchy of the ontologies than the concepts used for model annotations. Our analysis also reveals that the information content of concepts in ontologies and their usage for model annotation do not correlate.ConclusionsAnnotation-based feature extraction enables the comparison of model sets, as opposed to existing methods for model-to-keyword comparison, or model-to-model comparison.Electronic supplementary materialThe online version of this article (doi:10.1186/s13326-015-0014-4) contains supplementary material, which is available to authorized users.
Background: Model repositories such as BioModels Database provide computational models of biological systems for the scientific community. These models contain rich semantic annotations that link model entities to concepts in well-established bio-ontologies such as Gene Ontology. Consequently, thematically similar models are likely to share similar annotations. Based on this assumption, we argue that semantic annotations are a suitable tool to characterize sets of models. These characteristics improve model classification, allow to identify additional features for model retrieval tasks, and enable the comparison of sets of models. Results:In this paper we discuss four methods for annotation-based feature extraction from model sets. We tested all methods on sets of models in SBML format which were composed from BioModels Database. To characterize each of these sets, we analyzed and extracted concepts from three frequently used ontologies, namely Gene Ontology, ChEBI and SBO. We find that three out of the methods are suitable to determine characteristic features for arbitrary sets of models: The selected features vary depending on the underlying model set, and they are also specific to the chosen model set. We show that the identified features map on concepts that are higher up in the hierarchy of the ontologies than the concepts used for model annotations. Our analysis also reveals that the information content of concepts in ontologies and their usage for model annotation do not correlate. Conclusions:Annotation-based feature extraction enables the comparison of model sets, as opposed to existing methods for model-to-keyword comparison, or model-to-model comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.