Background We aimed at clarifying the role of lipocalin-2 (LCN-2) in clear-cell renal cell carcinoma (ccRCC). Since LCN-2 was recently identified as a novel iron transporter, we explored its iron load as a decisive factor in conferring its biological function. Methods LCN-2 expression was analysed at the mRNA and protein level by using immunohistochemistry, RNAscope® and qRT-PCR in patients diagnosed with clear-cell renal cell carcinoma compared with adjacent healthy tissue. We measured LCN-2-bound iron by atomic absorption spectrometry from patient-derived samples and applied functional assays by using ccRCC cell lines, primary cells, and 3D tumour spheroids to verify the role of the LCN-2 iron load in tumour progression. Results LCN-2 was associated with poor patient survival and LCN-2 mRNA clustered in high- and low-expressing ccRCC patients. LCN-2 protein was found overexpressed in tumour compared with adjacent healthy tissue, whereby LCN-2 was iron loaded. In vitro, the iron load determines the biological function of LCN-2. Iron-loaded LCN-2 showed pro-tumour functions, whereas iron-free LCN-2 produced adverse effects. Conclusions We provide new insights into the pro-tumour function of LCN-2. LCN-2 donates iron to cells to promote migration and matrix adhesion. Since the iron load of LCN-2 determines its pro-tumour characteristics, targeting either its iron load or its receptor interaction might represent new therapeutic options.
Sphingosine-1-phosphate (S1P) is involved in the regulation of important cellular processes, including immune-cell trafficking and proliferation. Altered S1P signaling is strongly associated with inflammation, cancer progression, and atherosclerosis; however, the mechanisms underlying its (patho)physiologic effects are only partially understood. This study evaluated the effects of S1P in vitro and in vivo on the biosynthesis of leukotrienes (LTs), which form a class of lipid mediators involved in the pathogenesis of inflammatory diseases. Here, we report for the first time that S1P potently suppresses LT biosynthesis in Ca-ionophore-stimulated intact human neutrophils. S1P treatment resulted in intracellular Ca mobilization, perinuclear translocation, and finally irreversible suicide inactivation of the LT biosynthesis key enzyme 5-lipoxygenase (5-LO). Agonist studies and S1P receptor mRNA expression analysis provided evidence for a S1P receptor 4-mediated effect, which was confirmed by a functional knockout of S1P4 in HL60 cells. Systemic administration of S1P in wild-type mice decreased both macrophage and neutrophil migration in the lungs in response to LPS and significantly attenuated 5-LO product formation, whereas these effects were abrogated in 5-LO or S1P4 knockout mice. In summary, targeting the 5-LO pathway is an important mechanism to explain S1P-mediated (patho)physiologic effects. Furthermore, agonism at S1P4 represents a novel effective strategy in pharmacotherapy of inflammation.-Fettel, J., Kühn, B., Guillen, N. A., Sürün, D., Peters, M., Bauer, R., Angioni, C., Geisslinger, G., Schnütgen, F., Meyer zu Heringdorf, D., Werz, O., Meybohm, P., Zacharowski, K., Steinhilber, D., Roos, J., Maier, T. J. Sphingosine-1-phosphate (S1P) induces potent anti-inflammatory effects in vitro and in vivo by S1P receptor 4-mediated suppression of 5-lipoxygenase activity.
In solid tumors, tumor‐associated macrophages (TAMs) commonly accumulate within hypoxic areas. Adaptations to such environments evoke transcriptional changes by the hypoxia‐inducible factors (HIFs). While HIF‐1α is ubiquitously expressed, HIF‐2α appears tissue‐specific with consequences of HIF‐2α expression in TAMs only being poorly characterized. An E0771 allograft breast tumor model revealed faster tumor growth in myeloid HIF‐2α knockout (HIF‐2αLysM−/−) compared with wildtype (wt) mice. In an RNA‐sequencing approach of FACS sorted wt and HIF‐2α LysM−/− TAMs, serine protease inhibitor, Kunitz type‐1 ( Spint1) emerged as a promising candidate for HIF‐2α‐dependent regulation. We validated reduced Spint1 messenger RNA expression and concomitant Spint1 protein secretion under hypoxia in HIF‐2α‐deficient bone marrow–derived macrophages (BMDMs) compared with wt BMDMs. In line with the physiological function of Spint1 as an inhibitor of hepatocyte growth factor (HGF) activation, supernatants of hypoxic HIF‐2α knockout BMDMs, not containing Spint1, were able to release proliferative properties of inactive pro‐HGF on breast tumor cells. In contrast, hypoxic wt BMDM supernatants containing abundant Spint1 amounts failed to do so. We propose that Spint1 contributes to the tumor‐suppressive function of HIF‐2α in TAMs in breast tumor development.
Previous studies towards reduced oxygen availability have mostly focused on changes in total mRNA expression, neglecting underlying transcriptional and post-transcriptional events. Therefore, we generated a comprehensive overview of hypoxia-induced changes in total mRNA expression, global de novo transcription, and mRNA stability in monocytic THP-1 cells. Since hypoxic episodes often persist for prolonged periods, we further compared the adaptation to acute and chronic hypoxia. While total mRNA changes correlated well with enhanced transcription during short-term hypoxia, mRNA destabilization gained importance under chronic conditions. Reduced mRNA stability not only added to a compensatory attenuation of immune responses, but also, most notably, to the reduction in nuclear-encoded mRNAs associated with various mitochondrial functions. These changes may prevent the futile production of new mitochondria under conditions where mitochondria cannot exert their full metabolic function and are indeed actively removed by mitophagy. The post-transcriptional mode of regulation might further allow for the rapid recovery of mitochondrial capacities upon reoxygenation. Our results provide a comprehensive resource of functional mRNA expression dynamics and underlying transcriptional and post-transcriptional regulatory principles during the adaptation to hypoxia. Furthermore, we uncover that RNA stability regulation controls mitochondrial functions in the context of hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.