The environmental quality of land can be assessed by calculating relevant threshold values, which differentiate between concentrations of elements resulting from geogenic and diffuse anthropogenic sources and concentrations generated by point sources of elements. A simple process allowing the calculation of these typical threshold values (TTVs) was applied across a region of highly complex geology (Northern Ireland) to six elements of interest; arsenic, chromium, copper, lead, nickel and vanadium. Three methods for identifying domains (areas where a readily identifiable factor can be shown to control the concentration of an element) were used: k-means cluster analysis, boxplots and empirical cumulative distribution functions (ECDF). The ECDF method was most efficient at determining areas of both elevated and reduced concentrations and was used to identify domains in this investigation. Two statistical methods for calculating normal background concentrations (NBCs) and upper limits of geochemical baseline variation (ULBLs), currently used in conjunction with legislative regimes in the UK and Finland respectively, were applied within each domain. The NBC methodology was constructed to run within a specific legislative framework, and its use on this soil geochemical data set was influenced by the presence of skewed distributions and outliers. In contrast, the ULBL methodology was found to calculate more appropriate TTVs that were generally more conservative than the NBCs. TTVs indicate what a "typical" concentration of an element would be within a defined geographical area and should be considered alongside the risk that each of the elements pose in these areas to determine potential risk to receptors.
We compare a suite of Polycyclic Aromatic Hydrocarbons (Parent PAHs) in soils and air across an urban area (Belfast UK). Isomeric PAH ratios suggest that soil PAHs are mainly from a combustion source. Fugacity modelling across a range of soil temperatures predicts that four ring and larger PAHs from pyrene to indeno[1,2,3–cd]pyrene all partition strongly (>98%) to the soil compartment. This modelling also implies that these PAHs do not experience losses through partitioning to other phases (air, water) due to soil temperature effects. Such modelling may help in understanding the overall contaminant distribution in soils. The air and soil data together with modelling suggests that care must be taken when considering isomeric ratios of compounds with mass lighter than 178 (i.e. phenanthrene and anthracene) in the soil phase. Comparison of duplicate and replicate samples suggest that field sampling of duplicates dominates uncertainty and validated methodologies for selection of field duplicates and lab splitting are required. As the urban soil four ring PAHs are at equilibrium in the soil phase, and have characteristic ratios that are dominated by a combustion source that is a single controlling factor over spatial distribution, methods that calculate background concentrations can be compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.