Reservoir construction and land use change are altering sediment transport within river systems at a global scale. Changes in sediment transport can impact river morphology, aquatic ecosystems, and ultimately the growth and retreat of delta environments. The Lower Mekong Basin is crucial to five neighboring countries for transportation, energy production, sustainable water supply, and food production. In response, countries have coordinated to develop programs for regional scale water quality monitoring that including surface sediment concentrations (SSSC); however, these programs are based on a limited number of point measurements and due to resource limitations, cannot provide comprehensive insights into sediment transport across all strategic locations within the Lower Mekong Basin. To augment in situ SSSC data from the current monitoring program, we developed an empirical model to estimate SSSC across the Lower Mekong Basin from Landsat observations. Model validation revealed that remotely sensed SSSC estimates captured the spatial and temporal dynamics in a range of aquatic environments (main stem of Mekong river, tributary systems, Mekong Floodplain, and reservoirs) while, on average, slightly underestimating SSSC by about 2 mg•L −1 across all settings. The operational SSSC model was developed and implemented using Google Earth Engine and Google App Engine was used to host an online application that allows users, without any knowledge of remote sensing, to access SSSC data across the region. Expanded access to
Water is a scarce, but essential resource in the Sahel. Rainfed ephemeral ponds and lakes that dot the landscape are necessary to the livelihoods of smallholder farmers and pastoralists who rely on these resources to irrigate crops and hydrate cattle. The remote location and dispersed nature of these water bodies limits typical methods of monitoring, such as with gauges; fortunately, remote sensing offers a quick and cost-effective means of regularly measuring surface water extent in these isolated regions. Dozens of operational methods exist to use remote sensing to identify waterbodies, however, their performance when identifying surface water in the semi-arid Sahel has not been well-documented and the limitations of these methods for the region are not well understood. Here, we evaluate two global dynamic surface water datasets, fifteen spectral indices developed to classify surface water extent, and three simple decision tree methods created specifically to identify surface water in semi-arid environments. We find that the existing global surface water datasets effectively minimize false positives, but greatly underestimate the presence and extent of smaller, more turbid water bodies that are essential to local livelihoods, an important limitation in their use for monitoring water availability. Three of fifteen spectral indices exhibited both high accuracy and threshold stability when evaluated over different areas and seasons. The three simple decision tree methods had mixed performance, with only one having an overall accuracy that compared to the best performing spectral indices. We find that while global surface water datasets may be appropriate for analysis at the global scale, other methods calibrated to the local environment may provide improved performance for more localized water monitoring needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.