Realistic representation of time‐dependent internal stress progression and deformation behavior of a potato tuber during a sample drop case has been studied in this article. A reverse engineering approach, compressive tests, slow motion camera records and finite element analysis (FEA) were employed to analyze the drop case deformation behavior of a sample potato tuber. Simulation results provided useful numerical data and stress distribution visuals. The numerical results are presented in a format that can be used for the determination of bruise susceptibility magnitude on solid‐like agricultural products during drop case. The visual observations revealed that slow motion camera images and simulation printouts were in good correlation. The modulus of elasticity of the potato specimens was calculated from experimental data to be 3.12 MPa and simulation results showed that the maximum equivalent stress was 0.526 MPa on the tuber. This value for stress indicates that bruising is not likely on the tuber under a pre‐defined drop height. In order to test the simulation accuracy, empirical, and simulation‐based estimates for total energy in this drop case were compared. The relative difference between empirical and simulation results was 1.27%. This study provide a good “how to do” guide to further research on the utilization of (FEM)‐based time‐dependent simulation approach in complex mechanical impact based damaging analyses and industry focused applications related to solid‐like agricultural products such as potato. Practical applications The engineering simulation based “how to do” pathway presented in this study is a scientific novelty because the explicit dynamics simulation technique for potato tuber damage under drop case and its visual verification has been limitedly introduced in the literature. This study present deeper analysis on material model description, slow motion camera records, time dependent non‐linear stress analysis and FEM based Explicit Dynamics Simulation procedures. This study aims to represent a realistic non‐linear deformation case of the tuber which is very complicated to obtain through physical and/or empirical expressions. As a further step from other literature studies, this research has presented a novel realistic time‐dependent non‐linear drop test simulation based on physical compressive material test data. The findings have been prepared in a form which may be used as input parameters in design studies for solid‐like agricultural products (such as potato tubers) processing machinery systems used in food/agricultural industries.
This paper presents the results of an investigation on internal stress progression and the explicit dynamics simulation of the bruising behavior of potato tubers under dynamic mechanical collision. Physical measurements, mechanical tests, advanced solid modeling, and engineering simulation techniques were utilized in the study. The tuber samples used in the simulation were reverse engineered and finite element analysis (FEA) was set up to simulate the collision-based bruising behavior of the potato tubers. The total number of identical tuber models used in the simulation was
This study describes a finite element method (FEM) based deformation simulation procedure for a power take off (PTO) shaft in an agricultural tractor. The agricultural tractor is a mobile power source in agricultural fields. The Agricultural tractor transmits power to the working implement through several systems independently. Most especially, rotary elements used in agricultural machinery take the required power and movement from the tractor take off (PTO) shaft. During this operation, the PTO shaft experiences a high dynamic loading condition such as excessive instant (impact) loading. This may cause an undesired failure case for the PTO shaft. In order to prevent such undesired failures, loading condition and stress distribution on the component should be described properly; however, an accurate description of the structural stress distribution on the shaft becomes an important problem. In this content, a case study was carried out on a failed PTO shaft, as described in this paper. The aim of this case study is to exhibit the stress distribution on the PTO shaft through finite element analysis under a torsional loading case which may be considered as the main cause of the failure. Visual outputs from the simulation results revealed a better understanding of the failure zone on the shaft. The maximum equivalent stress magnitude obtained from the simulation was 632.08 [MPa] (which was lower than the fracture point) on the shaft under maximum PTO torque, however, it was concluded that the main reason for the failure was excessive shock torsional loading. This work contributes to further research into usage of numerical method based deformation simulation studies for the transmission elements used in agricultural tractors/machinery.
This paper focuses on a design analysis of a flat die used in an agricultural biomass pelletizing machine by considering its high pressure loading failure susceptibility. The pellet die is one of the key elements in a pelletizing machine, and the strength of the die plate has an important role on the pellet's quality and producibility. In fact, higher compression ratio (CR-the ratio of effective length and the internal (press channel) diameter of a die orifice/hole) will provide denser pellets which is a desired phenomenon, however, if the compression pressure is too high or CR is not determined to compensate high pressures, the raw material may block the die and the die may experience deformation failure due to overloading. If the desire is to make high quality pellets with no die failure, optimum flat die hole/orifice design parameters should be used which can provide the best CR for a specific compression pressure. This is the core motivation of this research. In this study, Finite Element Analysis (FEA) based design exploration has been utilised for a sample single hole flat die with various die geometry parameters against various compression pressure values. Following the FEA design exploration undertaken, a response surface analysis (RSA) was carried out and then estimation models (empirical equations), which could be used to calculate parameters of the die hole/orifice against applied compression pressure and failure susceptibility based on structural stress and deformation, was described. The results gained from the RSA has indicated that the estimation models have high R 2 values (higher than 98 %) which could be used for adequately predicting failure susceptibility indicators. In addition to this, FEM-based simulation print-outs have provided useful stress distribution visuals on the die against different compression pressure values. Most especially, the study has highlighted that a detailed structural optimisation study may be scheduled in order to obtain die geometry design parameters with a focus on the failure susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.