The soil erosion is the most serious environmental problem in watershed areas in Turkey. The main factors affecting the amount of soil erosion include vegetation cover, topography, soil, and climate. In order to describe the areas with high soil erosion risks and to develop adequate erosion prevention measures in the watersheds of dams, erosion risk maps should be generated considering these factors. Remote Sensing (RS) and Geographic Information System (GIS) technologies were used for erosion risk mapping in Kartalkaya Dam Watershed of Kahramanmaras, Turkey, based on the methodology implemented in COoRdination of INformation on the Environment (CORINE) model. ASTER imagery was used to generate a land use/cover classification in ERDAS Imagine. The digital maps of the other factors (topography, soil types, and climate) were generated in ArcGIS v9.2, and were then integrated as CORINE input files to produce erosion risk maps. The results indicate that 33.82%, 35.44%, and 30.74% of the study area were under low, moderate, and high actual erosion risks, respectively. The CORINE model integrated with RS and GIS technologies has great potential for producing accurate and inexpensive erosion risk maps in Turkey.
The satellite imagery has been effectively utilized for classifying land cover types and detecting land cover conditions. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor imagery has been widely used in classification process of land cover. However, atmospheric corrections have to be made by preprocessing satellite sensor imagery since the electromagnetic radiation signals received by the satellite sensors can be scattered and absorbed by the atmospheric gases and aerosols. In this study, an ASTER sensor imagery, which was converted into top-of-atmosphere reflectance (TOA), was used to classify the land use/cover types, according to COoRdination of INformation on the Environment (CORINE) land cover nomenclature, for an area representing the heterogonous characteristics of eastern Mediterranean regions in Kahramanmaras, Turkey. The results indicated that using the surface reflectance data of ASTER sensor imagery can provide accurate (i.e. overall accuracy and kappa values of 83.2% and 0.79, respectively) and low-cost cover mapping as a part of inventory for CORINE Land Cover Project.
The geo-spatial interface of the WEPP model called GeoWEPP uses digital geo-referenced information integrated with the most common GIS tools to predict sediment yield and runoff. The model determines where and when the sediment yield and runoff occurs and locates possible deposition places. In this study, the sediment yield and runoff from Orcan Creek watershed in Kahramanmaras region was estimated by using GeoWEPP model. To investigate the performance of the model, the sediment yield and runoff results from the GeoWEPP model were compared with the observed monthly data collected from the sample watershed. The average Root Mean Square Errors (RMSE) between observed and predicted average annual sediment yield and runoff were 2.96 and 8.43, respectively. The index of agreement was 0.98 and 0.99 for sediment yield and runoff, respectively, which indicated that the model predictions provided good results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.