Servo presses have recently come into prominence for sheet metal forming operations due to their flexibility, controllability, and simplicity. Minimum energy consumption and maximum tool life are their significant characteristics, leading to considerable reductions in manufacturing costs. This article presents technological review on design and applications of servo presses. The characteristics of servo presses are described and compared to conventional and hydraulic presses. Mechanisms used in servo presses and their motion concepts are evaluated with design features. The industrial background of mechanisms is reported with typical examples from leading press manufacturers. A new classification of the servo presses is presented according to mechanisms and drivers. Besides, ranking of press types according to power control and mechanisms is determined. Servo presses with slider-crank mechanism design are preferred due to their distinctive characteristics.
The widespread and increasing consumption of fossil-based fuels as an energy source causes a rapid decrease of these natural sources, as well as an increase of pollution in the atmosphere. Fuel oil, one of the products of fossil fuels, is today the commonly used energy source for transportation. The importance of contributing to the fuel economy and of increasing environmental consciousness have necessitated certain measures in the automotive sector, as well as in other industrial sectors. Therefore, the technological developments recently carried out in the automotive sector aim to reduce the consumption of fossil fuels, for example by recovering waste energy in vehicles. In this direction, efforts have been centered upon the development of energy harvesting systems that provide energy recovery from dynamic parts of the vehicles, such as suspensions. Moreover, the regenerative braking systems that recover some amount of kinetic energy of the vehicles slowing down have been developed and have been in use long since. In this study, research studies on providing the recovery of the vehicles’ waste energy are reviewed with their comparisons.
This study aimed to increase the percentage of the storage capacity of TiFe alloys, which are used for hydrogen storage. The TiFe alloys are capable of very high pressure storage. In this study, for the purpose of activation of storage alloy in low pressures, the required parameters were applied one by one. After about 3-4 hours of grinding, it was observed that the storage capacity was increased by about five times. In the study for determining the iteration number, it was clarified that, by applying about 10 times charge-discharge process, the storage rate was increased by about 15 times. It was concluded by the experimental research that, with a maximum of 10% of the carbon addition, TiFe alloy purity was degraded and storage rate increased at a rate of 27%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.