Saudi Arabia covers most of the Arabian Peninsula and is characterized by tectonic regimes ranging from Precambrian to Recent. Using gravity data to produce the lateral boundaries of subsurface density bodies, and edge detection of potential field data, a new subsurface structural map was created to decipher the structural framework controls on the distribution of gold deposits in Saudi Arabia. Moreover, we detected the relationships between major structures and mineral accumulations, thereby simultaneously solving the problem of edge detectors over complex tectonic patterns for both deeper and shallower origins. Analytic signal (ASg), theta map (TM), TDX, and softsign function (SF) filters were applied to gravity data of Saudi Arabia. The results unveil low connectivity along the Najd fault system (NFS) with depth, except perhaps for the central zones along each segment. The central zones are the location of significant gold mineralization, i.e., Fawarah, Gariat Avala, Hamdah, and Ghadarah. Moreover, major fault zones parallel to the Red Sea extend northward from the south, and their connectivity increases with depth and controls numerous gold mines, i.e., Jadmah, Wadi Bidah, Mamilah, and Wadi Leif. These fault zones intersect the NFS in the Midyan Terrane at the northern part of the AS, and their conjugation is suggested to be favorable for gold mineralization. The SF maps revealed the boundary between the Arabian Shield and Arabian Shelf, which comprises major shear zones, implying that most known mineralization sites are linked to post-accretionary structures and are not limited to the Najd fault system (NFS).
The Gabal (G.) El-Niteishat area lies in the Central Eastern Desert of Egypt which is known for various mineral resources and geological structures. Umm Gheig, Umm Naggat, Umm Shaddad, Wadi (W.) Zeidun and Sigdit represent some important regions that contain mineral deposits in the study area. Various filters such as first vertical derivative (FVD), horizontal gradient magnitude (HGM), tilt derivative (TDR) and near-surface were applied to the airborne magnetic data for the study area to deduce the structural lineaments and magnetic source edges which were controlled by the presence of mineral deposits. Processed Landsat ETM+ images are used for delineating the rock unit boundaries that are exposed in the study area such as serpentinite, metagabbro, metavolcanics and metasediments. Also, band ratios, principal component analysis (PCA) and false-color composite image (Crosta alteration image) were applied to get specific results about the alteration zones. The structural lineaments analysis illustrated that the common trends that affected the study area were NW-SE, NE-SW, E-W and N-S. Integration of remote sensing and airborne magnetic data exhibited the relation between mineralization and structural lineaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.