In recent papers the solution of nonlinear Fredholm integral equations was discussed using Adomian decomposition method (ADM). For case in which the integrals are analytically impossible, ADM can not be applied. In this paper a discretized version of the ADM is introduced and the proposed version will be called discrete Adomian decomposition method (DADM). An accelerated formula of Adomian polynomials is used in calculations. Based on this formula, a new convergence approach of ADM is introduced. Convergence approach is reliable enough to obtain an explicit formula for the maximum absolute truncated error of the Adomian's series solution. Also, we prove that the solution of nonlinear Fredholm integral equation by DADM converges to ADM solution. Finally, some numerical examples were introduced.
In this article, we solve the second type of nonlinear Volterra picture fuzzy integral equation (NVPFIE) using an accelerated form of the Adomian decomposition method (ADM). Based on (α,δ,β)-cut, we convert the NVPFIE to the nonlinear Volterra integral equations in a crisp form. An accelerated version of the ADM is used to solve this transformed system, which is based on a new formula for the Adomian polynomial. The sufficient condition that guarantees a unique solution is obtained using this new Adomian polynomial, error estimates are given, and the convergence of the series solution is proven. Numerical cases are discussed to illustrate the effectiveness of this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.