Rationale: Transthoracic Doppler echocardiography is recommended for screening for the presence of pulmonary hypertension (PH). However, some recent studies have suggested that Doppler echocardiographic pulmonary artery pressure estimates may frequently be inaccurate. Objectives: Evaluate the accuracy of Doppler echocardiography for estimating pulmonary artery pressure and cardiac output. Methods: We conducted a prospective study on patients with various forms of PH who underwent comprehensive Doppler echocardiography within 1 hour of a clinically indicated right-heart catheterization to compare noninvasive hemodynamic estimates with invasively measured values. Measurements and Main Results: A total of 65 patients completed the study protocol. Using Bland-Altman analytic methods, the bias for the echocardiographic estimates of the pulmonary artery systolic pressure was 20.6 mm Hg with 95% limits of agreement ranging from 138.8 to 240.0 mm Hg. Doppler echocardiography was inaccurate (defined as being greater than 610 mm Hg of the invasive measurement) in 48% of cases. Overestimation and underestimation of pulmonary artery systolic pressure by Doppler echocardiography occurred with a similar frequency (16 vs. 15 instances, respectively). The magnitude of pressure underestimation was greater than overestimation (230 6 16 vs. 119 6 11 mm Hg; P 5 0.03); underestimates by Doppler also led more often to misclassification of the severity of the PH. For cardiac output measurement, the bias was 20.1 L/min with 95% limits of agreement ranging from 12.2 to 22.4 L/min. Conclusions: Doppler echocardiography may frequently be inaccurate in estimating pulmonary artery pressure and cardiac output in patients being evaluated for PH.Keywords: echocardiography; pulmonary hypertension; pulmonary systolic pressure; cardiac output; accuracy Pulmonary hypertension (PH), a syndrome characterized by increased pulmonary vascular resistance and remodeling, is associated with significant morbidity and mortality, which are directly related to cardiac function (1). Although the definitive diagnosis of PH is currently established through right-heart catheterization, accurate noninvasive assessment of pulmonary arterial pressure and cardiac output (CO) is desirable both for diagnostic purposes and to assess response to therapy.Transthoracic Doppler echocardiography (DE) is recommended as the initial noninvasive modality in the screening and evaluation of PH (2). Echocardiography can be used to evaluate right-sided chamber size and function and the presence of pericardial effusion, which are known to impact survival (3-5). Frequently, DE is used to estimate the right ventricular systolic pressure by estimating the pressure gradient between the right ventricle and the right atrium using the modified Bernoulli equation, 4v 2 , where v equals the velocity of the tricuspid regurgitant jet. An estimated right atrial pressure is added to this number to approximate the right ventricular systolic pressure, which equals the pulmonary artery systolic pres...
TAPSE powerfully reflects RV function and prognosis in PAH.
The demands on a pulmonary arterial hypertension (PAH) treatment algorithm are multiple and in some ways conflicting. The treatment algorithm usually includes different types of recommendations with varying degrees of scientific evidence. In addition, the algorithm is required to be comprehensive but not too complex, informative yet simple and straightforward. The type of information in the treatment algorithm are heterogeneous including clinical, hemodynamic, medical, interventional, pharmacological and regulatory recommendations. Stakeholders (or users) including physicians from various specialties and with variable expertise in PAH, nurses, patients and patients' associations, healthcare providers, regulatory agencies and industry are often interested in the PAH treatment algorithm for different reasons. These are the considerable challenges faced when proposing appropriate updates to the current evidence-based treatment algorithm.The current treatment algorithm may be divided into 3 main areas: 1) general measures, supportive therapy, referral strategy, acute vasoreactivity testing and chronic treatment with calcium channel blockers; 2) initial therapy with approved PAH drugs; and 3) clinical response to the initial therapy, combination therapy, balloon atrial septostomy, and lung transplantation. All three sections will be revisited highlighting information newly available in the past 5 years and proposing updates where appropriate. The European Society of Cardiology grades of recommendation and levels of evidence will be adopted to rank the proposed treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.