The growth of Ag nanostrucutres on borosilicate glass substrates by ion beam sputter deposition in the Ar ion energy range from 150 to 600 eV is demonstrated. Rates of deposition as low as 0.01 nm/s are achieved at an Ar ion energy of 150 eV. This leads to the formation of a random array of nearly spherical Ag particles with a mean size of approximately 100 nm, separated by distances of similar order of magnitude. The particles organize themselves into arrays over lengths of at least 10 microm. As the thickness is increased from 3 to 18 nm there is a transition in morphology from an array to linear chains and finally a dense continuous film. There is a similar microstructural evolution as a function of increasing ion energy. The plasmon resonances can be tuned depending on shape, size and interparticle distances. As the thickness of the films increase, the main plasmon peaks can be tuned from 380 to 680 nm. The spheroidal shape of the particles induces additional peaks (localized surface plasmons) centered around 430 +/- 10 nm. Detailed simulations have been carried out based on Maxwell Garnett theory to distinguish the effects of shape and size on plasmon resonances. It is demonstrated that shape rather than the size of the particles has a stronger influence on the shift in plasmon resonances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.