Well-performance investigation highly depends on the accurate estimation of its oil and gas flow rates. Testing separators and multiphase flow meters are associated with many technical and operational issues. Therefore, this study aims to implement the support vector machine (SVM), and random forests (RF) as machine learning (ML) methods to estimate the well production rate based on chokes parameters for high GOR reservoirs. Dataset of 1,131 data points includes GOR, upstream and downstream pressures (PU, and PD), choke size (D64), and actual data of oil and gas production rates. The data have GOR was up to 9,265 SCF/STB, the oil rate varied from 1,156 and 7,982 BPD. SVM and RF models were built to estimate the production rates. The ML models were trained using seventy percent of the dataset, while the models were tested and validated using thirty percent of the dataset. The dataset was classified to 622 wells that were flowing at critical flow compared to 509 wells that were flowing at subcritical conditions based on a PD/PU ratio of 0.55. Four machine learning models were developed using SVM and RF for subcritical flow and critical flow conditions. Different performance indicators were applied to assess the developed models. SVM and RF models revealed average absolute percent error (AAPE) of 1.3, and 0.7%, respectively in the case of subcritical flow conditions. For critical flow conditions, the AAPE was found to be 1.7% in the SVM model, and 0.8% in the RF model. The developed models showed a coefficient of determination (R2) higher than 0.93. All developed ML models perform better than empirical correlations. These results confirm the capabilities to predict the oil rates from the choke parameters in real-time without the requirement of instrument installation of wellsite intervention.
Measuring oil production rates of individual wells is important to evaluate a well’s performance. Multiphase flow meters (MPFMs) and test separators have been used to estimate well production rates. Due to economic and technical issues with MPFMs, especially for high gas–oil ratio (GOR) reservoirs, the use of a choke formula for estimating well production rate is still popular. The objective of this study is to implement different artificial intelligence (AI) techniques to predict the oil rate through wellhead chokes. Support-vector machine (SVM) and random forests (RF) were used to generate different models to predict the production rates for high GOR and WC wells. A set of data (548 wells) was obtained from oil fields in the Middle East. GOR varied from 1000 to 9351 scf/stb, and WC ranged from 1 to 60%. Around 300 wells were flowing under critical flow conditions, while the rest were subcritical. Hence, two cases were studied using each AI model. Seventy percent of the data was used to train both RF and SVM models, while 30% of the data was used to test and validate these models. The developed RF and SVM models were then compared against the previous empirical formulas. The RF model in both critical and subcritical flow conditions was able to perfectly match the actual oil rates. SVM was able to predict the general trend for the oil rates but missed some of the sharp changes in the oil rate trend. The average absolute percent error (AAPE) values in the subcritical flow for SVM and RF were 1.7 and 0.7%, respectively, while in the critical flow, the AAPE values were 1.4 and 0.75% for SVM and RF models, respectively. SVM and RF models outperform the published formulas by 34%. The results from this study will help to estimate the real-time oil and gas rates based on the available data from wellhead chokes without the need for field intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.