Similarities in the behavior of diverse animal species that form large groups have motivated attempts to establish general principles governing animal group behavior. It has been difficult, however, to make quantitative measurements of the temporal and spatial behavior of extensive animal groups in the wild, such as bird flocks, fish shoals, and locust swarms. By quantifying the formation processes of vast oceanic fish shoals during spawning, we show that (i) a rapid transition from disordered to highly synchronized behavior occurs as population density reaches a critical value; (ii) organized group migration occurs after this transition; and (iii) small sets of leaders significantly influence the actions of much larger groups. Each of these findings confirms general theoretical predictions believed to apply in nature irrespective of animal species.
Pelagic plant life draws its principal supply of dissolved or undissolved nitrogen either from the coasts or from localities where warm and cold currents meet." J. Hjort "Where cold and warm currents meet at the surface of the ocean there is a rise of temperature for the animals of the cold current and a fall of temperature for the animals of the warm current, which results in a plentiful destruction of organisms." Sir John Murray "We are well acquainted with the stream in our pursuit of whales, which keep to the sides of it but are not met within it."
Until now, continental shelf environments have been monitored with highly localized line-transect methods from slow-moving research vessels. These methods significantly undersample fish populations in time and space, leaving an incomplete and ambiguous record of abundance and behavior. We show that fish populations in continental shelf environments can be instantaneously imaged over thousands of square kilometers and continuously monitored by a remote sensing technique in which the ocean acts as an acoustic waveguide. The technique has revealed the instantaneous horizontal structural characteristics and volatile short-term behavior of very large fish shoals, containing tens of millions of fish and stretching for many kilometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.