La clasificación de imágenes térmicas es un aspecto clave en el sector industrial, debido a que suele ser el punto de partida en la detección de fallos en equipos eléctricos. En algunos casos, esta tarea se automatiza mediante el uso de técnicas tradicionales de inteligencia artificial, mientras que en otros, es realizada de manera manual, lo cual puede traer consigo altas tasas de error humano. Este artículo presenta un análisis comparativo entre once arquitecturas de transfer learning (AlexNet, VGG16, VGG19, ResNet, DenseNet, MobileNet v2, GoogLeNet, ResNeXt, Wide ResNet, MNASNet y ShuffleNet) mediante el uso de fine-tuning, con la finalidad de realizar una clasificación binaria de imágenes térmicas en una red de distribución eléctrica. Para ello, se dispone de una base de datos con 815 imágenes, divididas mediante la técnica tipo hold-out 60-20-20 y validación cruzada con 5-folds, para finalmente analizar su rendimiento mediante el test de Friedman. Luego de los experimentos, se obtuvieron resultados satisfactorios con exactitudes superiores a 85 % en diez de las arquitecturas previamente entrenadas. Sin embargo, la arquitectura que no se entrenó previamente presentó una exactitud baja; concluyéndose que la aplicación de transfer learning mediante el uso de arquitecturas previamente entrenadas es un mecanismo adecuado en la clasificación de este tipo de imágenes, y representa una alternativa confiable frente a técnicas tradicionales de inteligencia artificial.
This work shows a method based on Business Intelligence and its application for solving issues and problems in small and medium industries. In this matter, methodologies used by specialists were investigated: three methods were chosen and evaluated, and, of them, the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology was used as a reference. Making an unconventional use of a commercial BI platform, the methodology was applied to a real case study: an agro-industrial company. After the application of the methodology and the descriptive, diagnostic and prescriptive analyzes, information and knowledge were found that allowed to propose the deployment of corrective measures that will improve the management of the company's electricity supply. This showed that these tools not only have application in commercial matters but also in the management of the electricity supply and, therefore, in the organizational performance of the company.
La clasificación de imágenes térmicas es un aspecto clave en el sector industrial, debido a que suele ser el punto de partida en la detección de fallos en equipos eléctricos. En algunos casos, esta tarea se automatiza mediante el uso de técnicas tradicionales de inteligencia artificial, mientras que en otros, es realizada de manera manual, lo cual puede traer consigo altas tasas de error humano. Este artículo presenta un análisis comparativo entre once arquitecturas de transfer learning (AlexNet, VGG16, VGG19, ResNet, DenseNet, MobileNet v2, GoogLeNet, ResNeXt, Wide ResNet, MNASNet y ShuffleNet) mediante el uso de fine-tuning, con la finalidad de realizar una clasificación binaria de imágenes térmicas en una red de distribución eléctrica. Para ello, se dispone de una base de datos con 815 imágenes, divididas mediante la técnica tipo hold-out 60-20-20 y validación cruzada con 5-folds, para finalmente analizar su rendimiento mediante el test de Friedman. Luego de los experimentos, se obtuvieron resultados satisfactorios con exactitudes superiores a 85 % en diez de las arquitecturas previamente entrenadas. Sin embargo, la arquitectura que no se entrenó previamente presentó una exactitud baja; concluyéndose que la aplicación de transfer learning mediante el uso de arquitecturas previamente entrenadas es un mecanismo adecuado en la clasificación de este tipo de imágenes, y representa una alternativa confiable frente a técnicas tradicionales de inteligencia artificial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.