Background: Alzheimer’s disease (AD) features reductions in key bioenergetic fluxes and perturbed mitochondrial function. Cytoplasmic hybrids (cybrids) generated through the transfer of AD subject mitochondria to mtDNA-depleted SH-SY5Y neuroblastoma cells recapitulate some of these features in an in vitro setting. Objective: For this study, we used the AD cybrid model to assess the impact of a nutrient-excess like-state via increasing O-GlcNAcylation on whole cell and mitochondrial homeostasis. Methods: We induced increased O-GlcNAc by treating AD and control cybrid cell lines with Thiamet G (TMG), an inhibitor of the O-GlcNAcase enzyme that mediates removal of the nutrient-dependent O-GlcNAc modification. Results: Relative to control cybrid cell lines, AD cybrid lines showed a blunted response to TMG-induced O-GlcNAcylation. At baseline, AD cybrid cell line mitochondria showed partial activation of several proteins that help maintain bioenergetic homeostasis such as AMP-Regulated Kinase suggesting that AD mitochondria initiate a state of nutrient stress promoting energetic compensation; however, this compensation reduces the capacity of cells to respond to additional nutrient-related stresses such as TMG treatment. Also, TMG caused disruptions in acetylation and Sirtuin 3 expression, while lowing total energetic output of the cell. Conclusion: Together, these findings suggest that modulation of O-GlcNAc is essential for proper energetic function of the mitochondria, and AD mitochondrial capacity to handle nutrient-excess is limited.
Epidemiological studies have revealed sex differences in the incidence and morbidity of respiratory virus infection in the human population, and often these observations are correlated with sex differences in the quality or magnitude of the immune response. Sex differences in immunity and morbidity also are observed in animal models of respiratory virus infection, suggesting differential dominance of specific immune mechanisms. Emerging research shows intrinsic sex differences in immune cell transcriptomes, epigenomes, and proteomes that may regulate human immunity when challenged by viral infection. Here, we highlight recent research into the role(s) of sex steroids and X chromosome complement in immune cells and describe how these findings provide insight into immunity during respiratory virus infection. We focus on the regulation of innate and adaptive immune cells by receptors for androgen and estrogens, as well as genes with a propensity to escape X chromosome inactivation. A deeper mechanistic knowledge of these pathways will help us to understand the often significant sex differences in immunity to endemic or pandemic respiratory pathogens such as influenza viruses, respiratory syncytial viruses and pathogenic coronaviruses.
Biological sex differences in morbidity upon influenza A virus (IAV) infection are linked to stronger interferon-centered immune responses in females, yet the regulatory role of sex hormone receptors in immune cell subsets is incompletely understood. Lung-resident group 2 innate lymphoid cells (ILC2s) express notably high levels of androgen receptors (AR). In IAV infection, ILC2s produce type 2 cytokines and facilitate tissue repair, but they also may be functionally suppressed by type 1 inflammation. Here we report sex differences in the magnitude of lung ILC2 functional suppression at the peak of sublethal IAV infection. Relative to males, ILC2s in female lungs showed attenuated proliferation, decreased propensity for IL-5 and amphiregulin production and reduced expression of GATA3 and IL-33R. Single cell RNA sequencing revealed sex-divergent transcriptomes, with female cells preferentially present in clusters of stressed, functionally suppressed ILC2s and male cells dominating in clusters of canonically activated ILC2s. Equivalent inflammatory cytokine levels and viral load suggested sex differences in ILC2-intrinsic factors. Indeed, naïve female ILC2s showed elevated IFNGR expression and higher phospho-STAT1 levels following IFNG stimulation, and lymphocyte-restricted STAT1 deficiency reversed IAV-induced suppression of female ILC2s. Lymphocyte-restricted AR deficiency or loss of androgens via orchiectomy led to increased IFNGR expression and suppression of male ILC2s. Collectively, these data show that ILC2-intrinsic AR activity regulates IFNGR-STAT1 signaling pathways to preserve canonical ILC2 function in males during IAV infection. Supported by grants from NIH (HL 119501) and the Presbyterian Health Foundation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.