The enormous increase in the use of the Internet in daily life has provided an opportunity for the intruder attempt to compromise the security principles of availability, confidentiality, and integrity. As a result, organizations are working to increase the level of security by using attack detection techniques such as Network Intrusion Detection System (NIDS), which monitors and analyzes network flow and attacks detection. There are a lot of researches proposed to develop the NIDS and depend on the dataset for the evaluation. Datasets allow evaluating the ability in detecting intrusion behavior. This paper introduces a detailed analysis of benchmark and recent datasets for NIDS. Specifically, we describe eight well-known datasets that include: KDD99, NSL-KDD, KYOTO 2006+, ISCX2012, UNSW-NB 15, CIDDS-001, CICIDS2017, and CSE-CIC-IDS2018. For each dataset, we provide a detailed analysis of its instances, features, classes, and the nature of the features. The main objective of this paper is to offer overviews of the datasets are available for the NIDS and what each dataset is comprised of. Furthermore, some recommendations were made to use network-based datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.