Toxoplasma gondii is the most common cause of secondary CNS infections in immunocompromised persons such as AIDS patients. The major route of adenosine metabolism in T. gondii is direct phosphorylation to adenosine 5'-monophosphate (AMP) catalyzed by the enzyme adenosine kinase (EC 2.7.1.20). Adenosine kinase in T. gondii is significantly more active than any other purine salvage enzyme in this parasite and has been established as a potential chemotherapeutic target for the treatment of toxoplasmosis. Subversive substrates of T. gondii,but not the human, adenosine kinase are preferentially metabolized to their monophosphorylated forms and become selectively toxic to the parasites but not their host. 6-Benzylthioinosine (BTI) was identified as an excellent subversive substrate of T. gondii adenosine kinase. Herein, we report the synthesis of new analogues of BTI as subversive substrates for T. gondii adenosine kinase. These new subversive substrates were synthesized starting from tribenzoyl protected d-ribose. To accomplish the lead optimization process, a divergent and focused combinatorial library was synthesized using a polymer-supported trityl group at the 5'-position. The combinatorial library of 20 compounds gave several compounds more active than BTI. Structure-activity relationship studies showed that substitution at the para position plays a crucial role. To investigate the reasons for this discrimination, substrates with different substituents at the para position were studied by molecular modeling using Monte Carlo Conformational Search followed by energy minimization of the enzyme-ligand complex.
Toxoplasma gondii adenosine kinase (EC.2.7.1.20) is the major route of adenosine metabolism in this parasite. The enzyme is significantly more active than any other enzyme of the purine salvage in T. gondii and has been established as a potential chemotherapeutic target for the treatment of toxoplasmosis. Certain 6-substituted purine nucleosides act as subversive substrates of T. gondii, but not the human, adenosine kinase. Therefore, these compounds are preferentially metabolized to their respective nucleotides and become selectively toxic against the parasites but not their host. Herein, we report the testing of newly synthesized 6-benzylthioinosine analogues with various substituents on the phenyl ring of their benzyl group as subversive substrates of T. gondii adenosine kinases. The binding affinity of these compounds to T. gondii adenosine kinase and their efficacy as antitoxoplasmic agents varied depending on the nature and position of the various substituents on the phenyl ring of their benzyl group. p-Cyano-6-benzylthioinosine and 2,4-dichloro-6-benzylthioinosine were the best ligands. In general, analogues with substitution at the para position of the phenyl ring were better ligands than those with the same substitutions at the meta or ortho position. The better binding of the para-substituted analogues is attributed to the combined effect of hydrophobic as well as van der Waals interactions. The 6-benzylthioinosine analogues were devoid of host-toxicity but all showed selective anti-toxoplasmic effect in cell culture and animal models. These results further confirm that toxoplasma adenosine kinase is an excellent target for chemotherapy and that 6-substituted purine nucleosides are potential selective antitoxoplasmic agents.
Toxoplasma gondii is an opportunistic pathogen responsible for toxoplasmosis. T. gondii is a purine auxotroph incapable of de novo purine biosynthesis and depends on salvage pathways for its purine requirements. Adenosine kinase (EC.2.7.1.20) is the major enzyme in the salvage of purines in these parasites. 6-Benzylthioinosine and analogues were established as "subversive substrates" for the T. gondii, but not for the human adenosine kinase. Therefore, these compounds act as selective antitoxoplasma agents. In the present study, a series of N 6 -benzyladenosine analogues were synthesized from 6-chloropurine riboside with substituted benzylamines & − solution phase parallel synthesis. These N 6 -benzyladenosine analogues were evaluated for their binding affinity to purified T. gondii adenosine kinase. Furthermore, the anti-toxoplasma efficacy and host toxicity of these compounds were tested in cell culture. Certain substituents on the aromatic ring improved binding affinity to T. gondii adenosine kinase when compared to the unsubstituted N 6 -benzyladenosine. Similarly, varying the type and position of the substituents on the aromatic ring led to different degrees of potency and selectivity as anti-toxoplasma agents. Among the synthesized analogues, N 6 -(2,4-dimethoxybenzyl) adenosine exhibited the most favorable anti-toxoplasma activity without host toxicity. The binding mode of the synthesized N 6 -benzyladenosine analogues were characterized to illustrate the role of additional hydrophobic effect and van der Waals interaction within an active site of T. gondii adenosine kinase by induced fit molecular modeling.
Several 7-deaza-6-benzylthioinosine analogues with varied substituents on aromatic ring were synthesized and evaluated against Toxoplasma gondii adenosine kinase (EC.2.7.1.20). Structure-activity relationships indicated that the nitrogen atom at the 7-position does not appear to be a critical structural requirement. Molecular modeling reveals that the 7-deazapurine motif provided flexibility to the 6-benzylthio group as a result of the absence of H-bonding between N7 and Thr140. This flexibility allowed better fitting of the 6-benzylthio group into the hydrophobic pocket of the enzyme at the 6-position. In general, single substitutions at the para or meta position enhanced binding. On the other hand, single substitutions at the ortho position led to the loss of binding affinity. The most potent compounds, 7-deaza- p-cyano-6-benzylthioinosine (IC 50 = 5.3 microM) and 7-deaza- p-methoxy-6-benzylthioinosine (IC 50 = 4.6 microM), were evaluated in cell culture to delineate their selective toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.