This research work introduces a novel method called the Sumudu–generalized Laplace transform decomposition method (SGLDM) for solving linear and nonlinear non-homogeneous dispersive Korteweg–de Vries (KdV)-type equations. The SGLDM combines the Sumudu–generalized Laplace transform with the Adomian decomposition method, providing a powerful approach to tackle complex equations. To validate the efficacy of the method, several model problems of dispersive KdV-type equations are solved, and the resulting approximate solutions are expressed in series form. The findings demonstrate that the SGLDM is a reliable and robust method for addressing significant physical problems in various applications. Finally, we conclude that this transform is a symmetry to other symmetric transforms.
In numerous geometric and physical applications of complex analysis, estimating the sharp bounds of coefficient-related problems of univalent functions is very important due to the fact that these coefficients describe the core inherent properties of conformal maps. The primary goal of this paper was to calculate the sharp estimates of the initial coefficients and some of their combinations (the Hankel determinants, Zalcman’s functional, etc.) for the class of symmetric starlike functions linked with the sigmoid function. Moreover, we also determined the bounds of second-order Hankel determinants containing coefficients of logarithmic and inverse functions of the same class.
We initiate a study of quasi-Jordan normed algebras. It is demonstrated that any quasi-Jordan Banach algebra with a norm1unit can be given an equivalent norm making the algebra isometrically isomorphic to a closed right ideal of a unital split quasi-Jordan Banach algebra; the set of invertible elements may not be open; the spectrum of any element is nonempty, but it may be neither bounded nor closed and hence not compact. Some characterizations of the unbounded spectrum of an element in a split quasi-Jordan Banach algebra with certain examples are given in the end.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.