The Normalization Difference Vegetation Index (NDVI), for many years, was widely used in remote sensing for the detection of vegetation land cover. This index uses red channel radiances (i.e., 0.66 μm reflectance) and near-IR channel (i.e., 0.86 μm reflectance). In the heavy chlorophyll absorption area, the red channel is located, while in the high reflectance plateau of vegetation canopies, the Near-IR channel is situated. Senses of channels (Red & Near- IR) read variance depths over vegetation canopies. In the present study, a further index for vegetation identification is proposed. The normalized difference vegetation shortwave index (NDVSI) is defined as the difference between the cubic bands of Near- IR and Shortwave infrared radiation (SWIR) divided by their sums. The radiances or reflectances are included in this index from the Near-IR channel and WSIR2 channel (2.1 μm). The NDVSI is less sensitivite to atmospheric effects as compared to NDVI. By comparing the one NDVSI index with the two indexes (NDVI, SAVI) of vegetation cover, good correlations were found between NDVI and NDVSI (R2=0.917) and between SAVI and NDVSI (R2=0.809. Accordingly, the proposed index can be taken into consideration as an independent vegetation index
Landsat7 of Enhanced thematic mapper plus (ETM+) was launched on April 15, 1999. Four years later, images start degrading due to the scan line corrector (SLC). SLC is a malfunction that results in pixel gaps in images captured by the sensor of Landsat7. The pixel gap regions extend from about one pixel near the image center and reach up to about 14 pixels in width near the image edge. The shape of this loss is like a zigzag line; however, there are different studies about repairing these gaps. The challenge of all studies depends on retrieving inhomogeneous areas because the homogenous area can be retrieved quickly depending on the surrounding area. This research focuses on filling these gaps by utilizing pixels around them gaps. Pixels from different satellites with the same resolution at the approximate equal date and exact location would be utilized. Mean and standard deviation were used in gap pixel predicting. For complete pixels gap predicting, an image registration should be applied for predicted a good result—image registration comprised of geometric and radiometric registration. Translation and rotation was the main effect of geometric registration, while pixel tone was mainly related to radiometric registration. Two images of Landsat8 (before and after) with nearly the date of Landsat 7 were used. The fidelity criteria (mean square error and mean absolute error) were utilized to evaluate the results. The results showed a good prediction of the gap pixels in the Landsat 7 image, considering the geometric and radiometric parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.