BackgroundMature teeth with chronic apical abscesses characterized by intermittent discharge of pus through an associated sinus tract. This communication between oral mucosa and periapical inflammation is challenging for the sealing ability of root canal obturation material. Therefore, the study aim was to compare the outcomes of endodontic treatment using mineral trioxide aggregate (MTA) cement to the conventional gutta-percha cone and root canal sealer as an obturation material in mature teeth with chronic apical abscesses.MethodsMature teeth with chronic apical abscesses referred to our clinic for root canal treatment between 2010 and 2012 were treated in a single visit and distributed among treatment (T) and control (C) groups using a predetermined randomization block (TCTC). After chemo-mechanical preparation, teeth in group T received MTA cement mixed in a 0.26 water to powder ratio, and teeth group C received gutta-percha and root canal sealer using the warm vertical technique. The treatment outcomes were defined as obturation length, periapical healing, resorption of extruded material, and survival rate at least 2.5 years after treatment. Three endodontists blinded to the type of obturation material documented treatment outcomes. Statistical analysis at P < 0.05 was conducted to measure difference between the groups.ResultsThirty-six teeth were treated between 2010 and 2012, and 32 teeth were evaluated in 2015. Complete periapical healing was observed in 87.5 % of MTA-treated teeth and 75.0 % of gutta-percha-treated teeth. Adequate obturation length was reported in 50.0 % of MTA-treated and 37.5 % of gutta-percha-treated teeth. Complete resorption of extruded material was evident in 83.3 % MTA-treated teeth and 100.0 % gutta-percha-treated teeth. The survival rate of MTA-treated teeth was 100 % at 3, and 5 years, while the survival rate of gutta-percha-treated teeth was 83.3 % at 3, and 5 years. There was no significant difference between the groups in term of periapical healing, survival rate, obturation length, or resorption of extruded material.ConclusionsThe outcomes of single-visit endodontic treatment of mature teeth with chronic apical abscesses using MTA cement were better, but not statistically significant, compared to conventional treatment.Trial registrationISRCTN15285974. Registered retrospectively 23 June 2015.Electronic supplementary materialThe online version of this article (doi:10.1186/s12903-016-0276-y) contains supplementary material, which is available to authorized users.
Objectives:To investigate the viability and differentiation capacity of dental pulp stem cells (DPSCs) isolated from single donors after two years of cryopreservation.Methods:This prospective study was conducted between October 2010 and February 2014 in the Stem Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia. Seventeen teeth extracted from 11 participants were processed separately to assess the minimum tissue weight needed to yield cells for culturing in vitro. Cell stemness was evaluated before passage 4 using the colony forming unit assay, immunofluorescence staining, and bi-lineage differentiation. Dental pulp stem cells were cryopreserved for 2 years. Post-thaw DPSCs were cultured until senescence and differentiated toward osteogenic, odontogenic, adipogenic, and chondrogenic lineages.Results:Viable cells were isolated successfully from 6 of the 11 participants. Three of these 6 cultured cell lines were identified as DPSCs. A minimum of 0.2 g of dental pulp tissue was required for successful isolation of viable cells from a single donor. Post-thaw DPSCs successfully differentiated towards osteogenic, odontogenic, chondrogenic, and adipogenic lineages. The post-thaw DPSCs were viable in vitro up to 70 days before senescence. There was no significant difference between the cells.Conclusion:Within the limitations of this investigation, viable cells from dental pulp tissue were isolated successfully from the same donor using a minimum of 2 extracted teeth. Not all isolated cells from harvested dental pulp tissue had the characteristics of DPSCs. Post-thaw DPSCs maintained their multi-lineage differentiation capacity.
Objective: The purpose of this study was to evaluate the shear bond strength (SBS) of hydraulic calcium silicate (Biodentine) as a core material to the e.max ceramic restoration. Methods: Forty discs (6 mm diameter; 2 mm thickness) were fabricated from each core material, Hydraulic calcium silicate [Biodentine™, Septodont], resin composite [Filtek™Z250 XT, 3M ESPE], and resin-modified glass ionomer cement (RMGIC) [GC Fuji II LC, GC Corporation]. Dentine surfaces of 40 extracted human permanent molars were exposed and used as a control group. All specimens were mounted in self-curing acrylic resin. One hundred sixty IPS e.max discs were fabricated (4 mm diameter; 2 mm thickness) and cemented to the core specimens with Variolink N (IvoclarVivadent). After storage in distilled water (37oC; 24h), the specimens were thermocycled 1.500 times. SBS was tested using a universal testing machine at 0.05 mm/min crosshead speed. The fracture modes were determined by a stereomicroscope at ×20 magnification. Data were analyzed using one-way analysis of variance followed by Tukey’s test (P=0.05). Results: The mean SBS values of four tested groups showed statistically significant differences (P<0.05). The resin composite group exhibited the highest SBS value (36.17±6.08 MPa), while the Biodentine had the lowest SBS value (21.86±3.18 MPa). Mixed failure mode was the most common failure type in all tested groups except in the Biodentine group, which had a predominantly cohesive failure. Conclusion: The SBS of e.max ceramic restorations cemented with resin is affected by the type of core material. Biodentine core material had the lowest SBS to e.max restoration. However, when Biodentine is indicated to be used as core material for pulp preservation, it is recommended to be covered with a layer of resin composite material to enhance its bonding strength to the e.max restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.