To gain a global view of mRNA decay in Arabidopsis thaliana, suspension cell cultures were treated with a transcriptional inhibitor, and microarrays were used to measure transcript abundance over time. The deduced mRNA half-lives varied widely, from minutes to >24 h. Three features of the transcript displayed a correlation with decay rates: (1) genes possessing at least one intron produce mRNA transcripts significantly more stable than those of intronless genes, and this was not related to overall length, sequence composition, or number of introns; (2) various sequence elements in the 39 untranslated region are enriched among short-and long-lived transcripts, and their multiple occurrence suggests combinatorial control of transcript decay; and (3) transcripts that are microRNA targets generally have short half-lives. The decay rate of transcripts correlated with subcellular localization and function of the encoded proteins. Analysis of transcript decay rates for genes encoding orthologous proteins between Arabidopsis, yeast, and humans indicated that yeast and humans had a higher percentage of transcripts with shorter half-lives and that the relative stability of transcripts from genes encoding proteins involved in cell cycle, transcription, translation, and energy metabolism is conserved. Comparison of decay rates with changes in transcript abundance under a variety of abiotic stresses reveal that a set of transcription factors are downregulated with similar kinetics to decay rates, suggesting that inhibition of their transcription is an important early response to abiotic stress.
Transcriptome and metabolite profiling of rice (Oryza sativa) embryo tissue during a detailed time course formed a foundation for examining transcriptional and posttranscriptional processes during germination. One hour after imbibition (HAI), independent of changes in transcript levels, rapid changes in metabolism occurred, including increases in hexose phosphates, tricarboxylic acid cycle intermediates, and g-aminobutyric acid. Later changes in the metabolome, including those involved in carbohydrate, amino acid, and cell wall metabolism, appeared to be driven by increases in transcript levels, given that the large group (over 6,000 transcripts) observed to increase from 12 HAI were enriched in metabolic functional categories. Analysis of transcripts encoding proteins located in the organelles of primary metabolism revealed that for the mitochondrial gene set, a greater proportion of transcripts peaked early, at 1 or 3 HAI, compared with the plastid set, and notably, many of these transcripts encoded proteins involved in transport functions. One group of over 2,000 transcripts displayed a unique expression pattern beginning with low levels in dry seeds, followed by a peak in expression levels at 1 or 3 HAI, before markedly declining at later time points. This group was enriched in transcription factors and signal transduction components. A subset of these transiently expressed transcription factors were further interrogated across publicly available rice array data, indicating that some were only expressed during the germination process. Analysis of the 1-kb upstream regions of transcripts displaying similar changes in abundance identified a variety of common sequence motifs, potential binding sites for transcription factors. Additionally, newly synthesized transcripts peaking at 3 HAI displayed a significant enrichment of sequence elements in the 3# untranslated region that have been previously associated with RNA instability. Overall, these analyses reveal that during rice germination, an immediate change in some metabolite levels is followed by a two-step, largescale rearrangement of the transcriptome that is mediated by RNA synthesis and degradation and is accompanied by later changes in metabolite levels.
The antagonistic interaction between iron (Fe) and phosphorus (P) has been noted in the area of plant nutrition. To understand the physiology and molecular mechanisms of this interaction, we studied the growth performance, nutrient concentration, and gene expression profiles of root and shoot segments derived from 10-d-old rice (Oryza sativa) seedlings under four different nutrient conditions: (1) full strength of Fe and P (+Fe+P); (2) full strength of P and no Fe (2Fe+P); (3) full strength of Fe and no P (+Fe2P); and (4) without both Fe and P (2Fe2P). While removal of Fe in the growth medium resulted in very low shoot and root Fe concentrations, the chlorotic symptoms and retarded seedling growth were only observed on seedlings grown in the presence of P. Microarray data showed that in roots, 7,628 transcripts were significantly changed in abundance in the absence of Fe alone. Interestingly, many of these changes were reversed if P was also absent (2Fe2P), with only approximately 15% overlapping with -Fe alone (-Fe+P). Analysis of the soluble Fe concentration in rice seedling shoots showed that P deficiency resulted in significantly increased Fe availability within the plants. The soluble Fe concentration under -Fe-P conditions was similar to that under +Fe+P conditions. These results provide evidence that the presence of P can affect Fe availability and in turn can influence the regulation of Fe-responsive genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.